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Abstract

Using a mathematical model for an RNA molecule as a family of disjoint edge-colored
interior planar graphs on a circle, we determine the expected number of secondary RNA
structures that can form under various assumptions on the type and number of ribonucleotide
bonds.
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1. Introduction

A ribonucleic acid (RNA) molecule consists of a sequence of ribonucleotides. Each
ribonucleotide contains one of four bases — adenine, cytosine, guanine, and uracil,
commonly denoted by A, C, G, and U, respectively. As the molecule forms, chemical
bonds join certain adenine and uracil nucleotide pairs and certain cytosine and
guanine nucleotide pairs. These bonds constrain the three-dimensional configuration
of the molecule which in turn influences its function.

The sequence of bases in an RNA molecule is referred to as its primary structure, the
set of bonded nucleotide pairs is the molecule’s secondary structure, and the three-
dimensional configuration is the tertiary structure of the molecule. Waterman [4],
Stein and Waterman [3], and Schmidtt and Waterman [2] have studied the number
of secondary structures possible when any two bases can bond to each other. Zuker
and Sankof [5] refined some of the calculations in {4, 3] by imposing the constraint
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that only certain base pairs can bond to each other and calculating the expected
number of secondary structures when the sequence of bases (the primary structure) is
chosen randomly.

Continuing in this line of research, we consider the expected number of structures
under various constraints on the type and the number of bonds allowed. As in [5], we
assume that the sequence of bases is chosen randomly. We begin with a mathematical
description.

A structure S on {1, ...,n} is a collection of disjoint pairs (i,j) where 1 <i <j <n.
The order of S is the number of pairs it contains. Its loop length is the smallest
difference between the elements of a pair. Two pairs (i,j) and (i,j) intersect if
(i —i)-(j —j)>0. The depth of S is the smallest integer d such that S can be
partitioned into d structures, each having the property that no two of its pairs intersect.

To “visualize” S, place the integers from 1 to n in increasing order on a circle and for
every pair (i,j) € S draw the corresponding chord. By definition, the number of chords
is the order of S, each chord connects two distinct integers, and no integer is connected
to more than one chord. The loop length of S is the minimum difference between the
integers at the endpoints of a chord. Two pairs intersect if their corresponding chords
cross each other. S is of depth 1 if no two chords cross. The structure S is of depth < d
if the chords can be drawn in d colors so that no two chords of the same color cross.
Fig. 1 illustrates the circles corresponding to two structures. Note that a structure of
depth 2 corresponds to a planar graph on a circle: draw the edges of one colored set
inside the circle, and the others outside.

Throughout the paper, we assume a fixed set Z of bases and a symmetric relation
R of matching base-pairs. Namely, Z < % x &, and (b,b’) € # implies (b',b) € A. Let
s4 S51,-.-,S, be a sequence of n bases. A pair (i,j) of distinct indices matches in s if
(si, ;) is a matching base-pair. A structure on {1,...,n} is valid for s if all its pairs
match in s. In the visualization above, all chords connect indices corresponding to
matching base-pairs.

For RNA molecules, # ={A4,C,G,U} and £ is the symmetric relation
{(4,U),(U, A),(C,G),(G,C)}. The pair (1,2) matches in the sequence s = UAGC
while the pair (1,3) does not. The order-2, depth-1, loop-length-1, structure
{(1,2),(3,4)} is valid for s whereas the order-2, depth-2, loop-length-2, structure
{(1,3),(2,4)} is not. Secondary RNA structures have been frequently modeled as
structures of depth 1 or 2 and minimum loop length 4 or 5 on long sequences.

Let T%!(n,m) be the set of structures on {1,...,n} that have order m, depth < d,
and loop length > I. Note that T%!(n,m) is independent of #. Let T%!(s, m) be the set
of structures in T%!(n, m) that are valid for a sequence s of length n (under %) and let

Ln/2)
T&'(s)= | T&'(ssm)

m=0

be the set of structures of depth < d, loop length > I, and arbitrary order, that are
valid for s (under ).
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Fig. 1. Two structures of loop length 2 on {1, ...,16}. Structure (a) has depth 1 and, as indicated by the
solid and dotted lines, structure (b) has depth 2.

We are mostly interested in the expected values of | T%'(s,m)| and | T4'(s)| when the
sequence s is formed randomly — each element s; is chosen independently according to
some probability distribution P over #. The match probability of the distribution
P with respect to Z is

1€ Y P(a)P(b),
(a.byeR
the probability that two elements of %, chosen independently according to P, are
a matching base-pair. By construction of s, it is also the probability that a given
structure pair matches in a sequence s chosen randomly according to P. We will see
that the expected values of | T4'(s,m)| and | T4'(s)| depend on P and Z only through
7, and we denote them by t3!(n,m) and t3'(n), respectively. By linearity of expecta-
tions,
Ln2]
ty'(n) = 3 ty'(n,m).
m=0

We are mostly interested in structures of depth 1 and loop length > 1. To simplify
notation, we omit the superscripts d and I if both are 1. For example, T%'(n,m) is the
set of order-m structures on {1, ...,n} that have depth < d and arbitrary loop length;
T#"'(s,m) is the set of depth-1, order-m structures on {1,...,n} that have loop length

> Il and are valid for the sequence s; and ¢,(n, m) is the expected number of structures
on {1,...,n} that have depth 1, order m, arbitrary loop length [ > 1, and are valid for
a randomly chosen sequence s.

1.1. Notational conventions

Define 0° = 1. When explicit limits are absent in sums of the form ¥, it is to be
understood that the summation variable (here k) ranges over all integer values in the
range — o0 to + co.
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The rising factorial a* is defined for every real a and integer k > 0 by
d=aa+1) - (a+k—1).
Similarly, the falling factorial a* is defined for real a and integer k > 0 by
ad=a(a—1)--(a—k+1).

(In accordance with the usual custom that a product over a null set is 1, we set
a® = a® = 1.) The binomial coefficients (}) are defined for every real r and integer k by

ry_ |0 if k<0,

k) g ifk=0.
We will also have recourse to multinomial coefficients: if my,...,m; are integers,
Y7~y m; = m, define

m _ 0 if any m; <0,
my,...,m; B ml!Tgm_i! if all m; = 0.

The general hypergeometric series with m upper parameters and n lower parameters is
formally defined by

Ay, e,y
mEn
bi,....by

None of the lower parameters b; can be zero or a negative integer, but other than that
the upper parameters q; and the lower parameters b; can be arbitrary.

All logarithms (with one clearly indicated exception) are to base 2. Finally, if
{ay,...,0} is a discrete probability distribution, define the binary entropy function by

k

ok
al tee amz
z>= ) L bEK

k>0 bk

k
h(ala"'aak)= - Z ailogais

i=1

with the usual convention 0log0 = 0. In accordance with customary usage, for
a Bernoulli probability distribution {&, 1 — a} we write h(«) instead of h(x, 1 — ).

1.2. Overview of results

In Section 2 we determine an exact expression for t,(n,m), the expected number of
structures on {1, ...,n} that have depth 1, order m, and arbitrary loop length [ > 1 that
are valid for a randomly chosen sequence s with match probability y. We show that

t(nm)—; § i
2T m - L\mymyn — 2m v

For large n and for m proportional to n, i.e., m = an with a = ©(1) bounded above
(away from 1/2) and below (away from 0), approximations show that

t,(n, m) = 1 2n(h(2a)+2a(1+logﬁ))<1 + 0(1))

2na*n®. /1 - 2a n
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We prove that, for fixed n, t,(n, m) is maximized when m takes a value m* given by

n+25 1
*=j -2 1540(-
" [2+1/ﬁ " (nﬂ

and that its value then is

£ (n,m*) = — (1+2\/§)"+2-5(1+o<%)).

2nyn?

In Section 3 we consider the expected number t,(n) of depth-1 structures on
{1,...,n} having arbitrary order and loop length. For y = 1/4, which corresponds to
uniformly distributed RNA sequences, we use direct calculations to show that

27" (2n+2
e =3 e )

For general values of y we use generating functions to show that t.(n) has the
hypergeometric representation

4y),
and prove that

(1+2\/;))n+3/2 1
L(n) = \ U+ O\ Gogm ) )

In particular,

Jn+32 1
ti(n) = W(l + O(W»

is the number of structures on {1,...,n} determined previously by Stein and Water-
man [3].

In Section 4 we address structures of depth < d where d is any fixed integer. Each
pair in such a structure can be viewed as being colored in one of d colors so that no
two pairs of the same color intersect. We approximate the number of structures on
{1,...,n} that have arbitrary loop length and a given number of pairs of each color.
We show that the largest number of structures,

_ 1 n+2d+1/2 1
(——ZRy)and(lud\/&) 1+0{~}),

is obtained when there are about (ﬁ /(1 + 2d\/;))n pairs of each color. We then
approximate the total expected number t2'(n) of depth < d structures of arbitrary
order and loop length, and show that

t‘;’,"(n) = O((Li%\[?l)_

1 1 1
—2n+3z,—zn

t'/(n) = ZFI( )
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Finally, in Section 5 we consider structures of depth 1, order m, and loop length > .
Setting up a recurrence for t,"(n,m), we obtain the following simple closed form
expression for the bivariate generating function

n.,.,m 1
H(Z,W) = gg[%'l(n, M)Z wo = m[l — \/1 — 47W22P(Z,W)2j|,
where
1—-z
P = .
(z,w) 1 =2z 4+ +yw)z? — ywz'*!

The particular case | = 2, namely structures where adjacent elements cannot be
matched, is of interest. An examination of the generating function yields the interest-
ing result

1,2 Il{in—m\fn—m-—1\

L (mm) =;<m + 1)( m—1 )y '
The particularization of this result when y = 1 has also been obtained recently by
Schmidtt and Waterman [2] using an ingenious, nonintuitive argument whose key
element is the replacement of the problem at hand by an equivalent combinatorial
problem on linear trees which has a known solution. The approach outlined here in
contradistinction is a straightforward combinatorial attack on the generating func-
tion.

For large n and m proportional to n, i.e., m = an with a = @(1) bounded above

(away from 1/2) and below (away from 0), approximations show that

22n(h(2a)—h(ﬂ)+a(2 ‘HOE\/;» (l + 0 (1 )) .

1,2
t,"(n,m) = -
" (mm) 2na’n? n

Carrying the analysis further, we show that, for fixed n, t;'z(n, m) attains its maximum
value when m takes a value m* given by

=31~ )

and we show that this maximum value is

ty2(n,m*) = (L+4/) iz(l VA +4‘/;)2"(1 - 0(1>).
n(l+2/y — /1 +4/)" 2 "

In particular, when y = 1 we obtain the interesting result

2n
t}'z(nsm*) = ®<ﬁz )s

n+ 0(1),
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where ¢ = (1 + \/3)/2 = 1.618 is the golden ratio. As for the d = 1, [ = 1 case, for
general values of y we show that ¢)'?(n) has the hypergeometric representation

16'}'>,

_%n+1= _%n_*_%’—%n"'%a—%n

t;'z(")=“F3( 2, —n+1,—n

and we show that

t’-l(n)=o<1<1 +,/12+4\/«;)z..)'

! n
Again, when y = 1, t}"?(n) has the very alluring dependence on the golden ratio:
logt}*(n) ~ 2nlogep (n - ).

For general , a series solution for t)*(n,m) (and hence for t}(n) also) is readily
obtained from the generating function. It does not appear likely, however, that the
series solution can be resolved into a simple closed form for general I.

2. Structures of depth 1, given order, and arbitrary loop length

Recall that t,(n,m) is the expected number of depth-1, order-m, arbitrary loop
length | > 1 structures on {1, ...,n} valid for a sequence chosen according to a prob-
ability distribution with match probability y. We first calculate ¢,(n, m), then approx-
imate it for large n and m.

A sequence of parentheses is well formed if it contains the same number of left and
right parentheses, and when scanned from left to right, the number of right paren-
theses never exceeds the number of left parentheses. The number of well-formed
sequences of 2m parentheses is well known to be the mth Catalan number

Cn "é‘—1~<2'">. (1)
m+ 1\ m

An order-m structure on {1, ..., 2m} can be mapped into a well-formed sequence of 2m
parentheses by setting the ith parenthesis to be a left parenthesis if i is the smaller
integer in its structure pair, and making it a right parenthesis if i is the larger integer in
its pair. This mapping is surjective but not injective. However, when restricted to
depth-1, arbitrary loop length structures, i.e., to structures in T(2m, m), the mapping
can be shown to be a bijection. For example, the structures {(1,6), (2,3), (4,5)} and
{(1,3), (2,6), (4,5)} both map into ({ ))( )); however, {(1,6), (2,3), (4,5)} is the only
depth-1 structure mapped to (( )( )). Therefore,

[ T(2m,m)| = Cp.

Each structure in T(n, m) corresponds to a 2m-element subset of {1, ...,n} (consisting
of the elements included in structure pairs) and to an order-m structureon {1, ...,2m}.
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Hence,

n 1 n 1 n+1
e (2)es im0 r{an T )

For the expected value, let 1(statement) be the indicator function that is 1 if
“statement” is true and is 0 otherwise. We noted that the probability that a given
structure pair matches for a random sequence s under £ is the match probability y. By
independence, the probability that a given structure of order m is valid for s under # is
y™. Therefore,

ty(nam) = z P(s)lTﬂ(s,m)l

se@n
= Y P(s) Y 1o is valid for s under %)
segn oe T(n,nm)

Y Y P(s) (o is valid for s under %)

oceT(n,m)seB"

= Y P(o is valid for a random string under %)

oeT(n,m)

= ) y

oeT(n,m)
=T (n,m)|y"™.

We have hence obtained the following simple expression for ¢,(n, m).

Assertion 1. For any match probability y € (0, 1], sequence length n, and order m,

' (nm) = 1 n m
A 1 m,m,n — 2m v

We now approximate t,(n, m) for large n and m. Applying Stirling’s approximation
formula

)

to the assertion, we see that for m proportional to n,

1 n n m 1
£y, m) = 2nm(m + 1)\ n — 2mm™m™(n — 2"1)"_2"'y (1 o (;)>

1 n 1
_ 2”"("'/"‘ min,(n—2m)/n}+mlogy 1 - .
2nm(m + 1)\ n —2m ( +O(")>

We hence have the following insight into the growth pattern of ¢,(n,m) as n increases
and the relative order m/n = a remains fixed. In fact, suppose m is proportional to n,
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7:1/4 ‘7=1/16

Fig. 2. Exponential part of ¢ (n,m) vs. m/n for various values of y.

i.e., m = an with a = ®(1) bounded above (away from 1/2) and below (away from 0).
Then

1 - 1
t. (n’ m) = 2n(h(2a) +2a(1 +log /7)) (1 + O (_4)) .
' ) 2na*n?. /1 - 2a n

Thus, when the relative order m/n = a is fixed, t,(n,m) grows exponentiaily with

n(h(2a) + 2a(1 + log/7)). v

Fig. 2 shows how this exponent varies with m/n for y = 1 (all base-pairs match), for
y = 1/4 (uniformly distributed RNA sequences), and for y = 1/16. Note that when
y < 1/4, for large relative orders the exponent is negative, hence the expected number
of structures decreases with n. We now determine the order having the maximal
expected number of structures. We first do so informally, concentrating only on the
exponent, then perform a precise calculation.

Differentiation shows that for any y,

max {h(x)+ xy} =y +log(l1+27"),

0<x<1

and that this value is achieved when x takes a value x* = 1/(1 + 27"). It follows that

max {h(x) + (1 +log./7)x} = log(l +2./7) 3)

0<x<1

and that this value is achieved when x takes the value x* = 1/(1 + 1/2\ﬂ).

Hence, the exponent of ¢,(n, m), given in (2), is maximized when m attains the value
n/(2 + 1/\/§), and the exponent then is nlog(1 + 2\ﬁ). The preceding derivation
however ignored the nonexponential part of t,(n,m). This, however, can affect the
location of the maximum of ¢,(n, m) by at most a constant. Thus, ¢,(n, m) is maximized
when m attains a value

m* + O(1), 4)

n
2+ 14y
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and
logt,(n,m*) ~ nlog(1 + 2\/';) (n > o).
In order to determine the O(1) term in m*, let

d=,ft,(n,m +1) _ (n—2m—1)(n — 2m)

R(m) == o) (m+ 1)(m +2)

be the ratio between successive values of t,(n,m)forme {0, ...,| n/2 | — 1}. It is simple
to see that R(m) decreases with m, hence t,(n, m) is unimodal, achieving its maximum
value at the first integer m* satisfying R(m*) < 1.

Let

det (n — 2x — 1)(n — 2x)
RX) =T +2

interpolate R(m). Solving for R(x*) = 1, we have
4y — D(x*)> ~@yyn—2y + )x*+(yn* —yn—2) =0.
Suppose y # 1/4. Then
Ayn =2y 434/’ + 20+ 42 + 20y + 1
B 8y —2
4yn — 2y + 3 + 2. /yn(1 + 5/2n) t
= +0O(-).
8y —2 n

The + solution falls outside the range {0,...,| n/2 |} (both for y < 1/4 and for
y > 1/4), hence

4y — — Dy —
o= (o2, 3B o
8y —2 8y —2 n
2.5 1
LY +o(—),
2+ 14/y n
in accord with the heuristic calculation in (4). (It is easy to verify that this also
subsumes the case y = 1/4.) We therefore have:

x*

Theorem 1. The expected number t,(n,m) of depth-1, order-m, loop length 1> 1
structures on {1, ... ,n} that are valid for a random sequence with match probability y is
maximized when m attains the value

n+25 1
x| T g z
m [2+1/ﬁ 5+O(n)",

and its value then is

ty(mm*) = L 1+ 2\/5)“5/2(1 + o(%))

nyn?
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3. Structures of depth 1

Now consider t,(n), the expected number of depth-1 structures of arbitrary order
and loop length on {1, ..., n} that are valid for a random sequence selected according
to a probability distribution with match probability y. Using results derived in the last
section, we express t,(n) as a simple sum and determine its value when y = 1/4. We
employ generating functions to evaluate t,(n) for y # 1/4.

Using Assertion 1 we have

Ln/2 1 Lw2] 1
= Frmm= ST 5

meo0 n+1,Z\mm+1,n—2m

In the special case where y = 1/4, which corresponds to uniformly distributed RNA
sequences, we can determine t,(n) exactly.

e L 1\
1/‘:‘n_n+lm=0 mm+ 1,n—2m)\ 4

_ 2 L’i“( n+1 >2n_2m

n+1,Zo\mm+1,n—2m '
To calculate the sum, consider the set of (%%, %) binary sequences of length 2n + 2,
consisting of n zeros and n + 2 ones. The parsing of such a sequence into n + 1 pairs of
consecutive bits contains m both-zero-pairs, m + 1 both-one-pairs, and n — 2m
mixed-pairs, where 0 <m <[n/2] For example, the 10-bit (n =4) sequence
0111100011 is parsed into 01,11,10,00,11, hence contains one both-zero-pair, two
both-one-pairs, and two mixed-pairs. The number of sequences yielding a given m is

n+1 n=2m
m.m+1.n-2m)2 .

Therefore,

L'§J< n+1 )2,‘_2,":(2n+2),
me—o \m,m+ 1,n —2m n
implying that
= 2 (2 2 (2
VYT n ) n+2\n+1 )

With C,., denoting the (n + 1)th Catalan number, we hence have the following
particularly simple expression for t,,,(n).

Assertion 2. For any sequence of length n, when the match probability y = 1/4, we have

t1/4(n)= 2_"C,,+1. (6)
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For 7 # 1/4, we could use the results of the last section only to obtain a crude
estimate. Bounding the right-hand side of (5), we obtain

1 n+1 )
t,(n) < ———m ( , ’>.},(1/2)(m+m)
' \\/';(n'*'l)mm,n;;o mm,n+1—m—m

+m'<n+1

1
=————(1 + 2\/);)n+1,

Jr(n+1)

where the last equality follows from the multinomial theorem.
On the other hand, Theorem 1 implies that

1) > ) = 5 (1 4+ 2/ (1 . o(%))

The two bounds differ by a factor proportional to n. To eliminate this discrepancy, we
use generating functions.
We begin by setting up the base for a recurrence:

PR (N ER
TN ifn=0or n=1.

The extension of the domain of ¢,(n) to the negative integers accords later notational
simplicity; when n is 0 or 1, only the empty structure is permissible, hence
t,(0) = t,(1) = 1. We can now set up the recurrence

n—1
t,n)=t,m—1+y Y t,(i—Dt,(n—i—1) (n=2).
i=1

The first summand represents the expected number of structures when no match
contains 1, and the ith term in the second summand represents the expected number of
structures when 1 is matched to i + 1, and relies on the fact that, as the structure has
depth 1, this match partitions such a structure into two independent structures, one on
{2,...,i}, the other on {i +2,...,n}, hence the expectation of the product is the
product of the expectations.

Let

H(s)=Y t,(n)s" (7

be the generating function of {¢,(n)}. Then
ys?H(s)? + (s — 1)H(s) + 1 = 0.

Trivial case 0: y = 0 — no matches can be made. We then have

1
H(S)=m=1+s+52+ cee
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implying
tg(n) = 1.

Without loss of generality now assume y # 0. Then

Hi(s)zl—si./(l—s)z—@s2

2ys?

1= s A= (14275121 — (1 - 2/y)s]2
N 2ys? '

Case 1: y = 1/4. As mentioned earlier, this corresponds to uniformly distributed
RNA sequences. The boundary conditions eliminate H . (s), leaving

H_(s) =S%[1 — s — (1 = 25)'2]

Using the identity

12\ (=)' 2%k —2
(£)=W(k-l)’ ®
we have
w1 1/2 T 2n+2\ __,
falm) = (— 1) (n+2>2 T (n+22\n+1 =2"Crer

in agreement with (6).
Case 2: 7¢{0,1/4}. Let « €1 +2/y and § =1 — 2./y. We have

(1 —a)2(1 —ps)i2 = ¥ ¥ (— 1);+j<1i2>(1§2)a,-ﬁjsi+j

i20j>0
h
- [(— 0y (1;2)<h1{:2j)afﬂ"‘ij|sh
h=>0 ji=0
d:-d Z thh
h>=0

Then

_(172\[1)2 B
() (2)er-
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_ (12N (V2 opr _ (V2\(12\ ppo_ _2HB_
()0 = (0)(5 ) 250

Again, the boundary conditions eliminate H +(s) leaving

and

_I_S_Zh>0dhsh_ dys dp+2 §
H-(s)= 2V32 a hgz 2'}’5 ngo . )

Equating corresponding coefficients in expressions (7) and (9), we have the following:

Assertion 3. For any match probability y € (0, 1] and sequence length n,

__1n-1n+2 1/2 12
Mm:% Z ( / )( +/2 )(1+2\/_) (1—2\/7’)" irz

i=o \ !

Note that the expression for t,(n) also subsumes the case y = 1/4. Now write ,(n) in
the form
ty(n) =Co + Cq1 + -+ Chn+2>
where

acc(— 17112\ (172 ,
ci———T( : )(Hz_i)(uz\/ym—z\/;) 2

1

Define

_1+2/y
1-2./y

By simple algebra,

|Cit1] (1 +3/2n—-2i+1))
|cil A+3/@2i-1) °

It is hence clear that |c;. 1 |/| Ac;| monotonically increases with i. As | A| > 1, it follows
that for some integer iy, the sequence {|c;|} decreases monotonically for 0 < i < i,
and increases monotonically for ip <i < n + 2 (ip can be 0, as when |A4| > 4). Note,
however, that as | A| > 1, it suffices for |¢;+ | > |¢;| that |A]/2n — 2i + 1) > 1/(2i — 1),
ori>(2n + |A| + 1)/2(JA| + 1). Hence,

= [4]

2n + A+ 1 "
2(|41+1) 27

o=

Henceforth in this section, let log = log,,,. Then,

|co|=|%( 12 )( —2./r*2| = o(11 = 25 1)
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is exponentially subdominant with respect to

(1 + 2 ';)n+2—logn|1 _ ZV/'}‘:llog" .
|Cn+2—logn| ~ \/Syfl:nsu(log n)yz = Q(ll + 2\/?[ )

Therefore all terms ¢, ..., Cp+1-10g» are¢ dominated by [¢n42-10gnl-
Write

n+2 n+1~—logn B+2

=Y o= TGt Y qEEmeye
i=0 i=0

i=n+2-logn

Then
X1 < lCn s 2-rogal = o(n(1 ;32,;@ ',,/)13',2]) - o( ‘j,;;ljg\nf)sﬂ)
and
2= Bewea= S, 0 (T Ja e avirea
ol ()
o)
() (- 0-2) () )
_ (14’:31,‘2/3:2( %)m (1 + o(l°f”>)(1 + O((l_oglﬁﬁ))'
Also

(=3 -0 - )

(1+2\/‘),,+3/2 |
tim) = et (1+ 0o ) )

We have therefore shown:

Theorem 2. For any match probability y € (0, 1],

+ 2.yt 1
t,(n )———3/4‘/1/_2—3/2 (HO(W))
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(this includes the case y = 1/4 where (6) gives better error terms). In particular, fory = 1,

3n+3/2 1
ty(n) =W<l N O(W»

is the number of structures on {1,...,n}.

Stein and Waterman directly estimated t,(n), the maximum number of depth-1
structures on {1,...,n}, using a “folk theorem” in combinatorics.

From Theorems 1 and 2 we can now argue that a typical depth-1, arbitrary loop
length [ > 1 structure has order

(1 + o(1)).

2+1/f

In particular, if y = 1 the typical depth-1, [ > 1 structure has roughly n#/3 matching
base-pairs, while for uniformly distributed RNA sequences (y = 1/4) the typical
depth-1, [ > 1 structure has roughly n/4 matching base-pairs.

4. Structures of depth <d

For structures of depth d larger than 1, we can imagine that each structure pair is
colored with one of d given colors so that no two pairs of the same color intersect. Let
m < (my,...,m,) and define t*!(n,m) to be the expected number of depth <d,
arbitrary loop length / > 1 structures on {1,...,n} that are: (1) valid for a random
sequence selected according to a probability distribution with match probability y;
and (2) for 1 <i<d have m; (nonintersecting) pairs colored with the ith color.

Throughout this section we assume that d is fixed. Define

lln

to be the total number of matches, i.e., the order of the structure. Arguments similar to
those used in Section 2 yield
2m;
B m
< m; ) ) v

d
n
9 (n,m) =
v (mm) (Zml,.. 2m,,,n—~2m><1=_[
Assertion 4. Let m = (m,,...,m;) where the m; are integers summing to m. Then

We hence have the following:
d 1 n
1 (n, m) = n
’ (n m) (il;Ilm +1(m13m1"',md,md,n—2m)y
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To maximize t3'(n,m) and determine the value m* of m that attains i1, we first
approximate (9{n, m) for m;’s which are proportiona) 16 m. In consonance with
earlier usage, for each i set m, = an, and let m = an. (Of course, a = Y9, a;.) Here, as

before, a = @(1) is bounded above (away from 1/2) and below (away from 0). Using
Stirling’s approximation formula we get

] 1
z?"{n,m) = o _2b[h(a;.ul,..,,ad'a¢,l—29)4alogy)(] + O(_))
2r)* /1 ~ 2an®[]{= a? n

1
@Y1 = 2an? ([, a

x Qnihi2a) + 2aCt +log/y+#ai/a. ... aqla)) (1 +0 < 1))

n

For any given large m, this expression is maximized when each m; is m/d, ie., when
a; = a/d. For large n, these values can be well approximated by actual m;’s:

tz;.l(n,m*) - dZd 2!()1(1«)‘2“(1+]og\//)-w+lagd)] 1 +O(_l_>>
(@n)(an)* /1 — 2a n

According to (3), the exponent on the right-hand side is maximized when a = m/n
takes the value

1
2+ 1/dy

* =

As argued earlier, the nonexponential part can affect the estimate of m* only by
a constant, we hence have:

Theorem 3. For any match probability y € (0,1], fixed depth d, and fixed sequence
length n, t3'' (n,m) is maximized when m attains the value

n
o —m— + Ol i,...,1},
" <d(2+1/dﬁ) ”)( ’

and its value then is
2 n m“‘)=———1 {1 +2d\/§\”*2““7’ 1+0 1
¥ > (zn,),)dn2é 4 n N

This estimate can be used to bound t%'(n), the expected number of depth-d
structures on {1,...,n} valid for a sequence chosen according to a probability
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distribution with match probability y. On the one hand,

1 +2d+ 1
) > 6 () = a1+ 240/7r “2<1 + 0(;))-

On the other hand,

d 1 n d
1 = Zx-:"“
() ,;,ma <i=1mi + 1)(m1>m1,---,md,ma,n -2%4, mi)y

miy
ngsn/Z
_ 1
H’.’t:x(n + i)
n+d a
> ( ) )yzmm-
miome \Mmy + 1, oomymy+ 1,n+d—2%7_ 1 m;
Ymi<n/2
< 1
= Y1 (n+i)
n+d 1252 mi+mi)
X Z ’ 4 d 1] y =t
my,mh, ..., ma,ma my,my,..., My, My, N + d— Zi:] (mi + m,~)

Ymi+m)<n

(L4 2dfyyte
TP (n+0)

where the last equality follows from the multinomial theorem.
We have therefore shown:

Theorem 4. For any match probability ye(0,1], and sequence length n, the total
number of structures of depth < d is bounded by

n+2d+1/2 n+d
s 2d\/;d) 2d (1 + 0(1>> <yl(n) < (41/2+ _%d\/_y )_- .
(2ny)'n n Y [Ti=1(n + )

In particular, logtd!(n) ~ nlog(1 + 2d./y) as n — oo.
Thus, the typical depth < d, loop length > [ structure has

" d+o
d(2+1/dﬁ)( + o)

matching base-pairs in each of d colors. In particular, when d =2 and 7y = 1 the
typical structure has approximately n/5 matching base-pairs in each of two colors; for
uniformly distributed RNA sequences (y = 1/4) with d = 2 a typical structure has
approximately n/6 matching base-pairs in each of two colors.
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S. Structures of depth 1, order m, and loop length >/

We now turn our attention to t}'(n,m), the expected number of depth-1, order-m
structures on {1,...,n} with loop length >1I. A generating functionological' ap-
proach is indicated.

We begin by setting up the boundary conditions for a recurrence. We have

3 (n,m)

_ {0 for (m<0)or (m=0and n<0) or (m>0 and n<2m+1—1)
"1 for (m=0 and n > 0).

Arguments similar to those before show that forallm>1and n>2m+1—1 we
have the recurrence:

it (n,m) =t} (n — 1,m)

n—1 min(m—1,| (i —1)/2 )
+ 9y > oti— Lt n—1—im—1-—j).
i=l j=max(0,m—1-[(n—i—D/2]))
The boundary conditions allow us to extend the summation over j to range from
— o to + oo as one or the other term in the product is identically zero outside the
range indicated above. Similarly, the upper limit on the sum over i can be extended to
+ oo. Therefore,

ttnmy =ttt n—1my+y Y Y- L (n—1—im—1-~j)

izl
=tMm—-1m+y Y Y@ Hntn—2—im—1—))
izl-1j

=t (n— Lm) +y LX) =2 = iom — 1 =)
iJ
-y ¥ Yolhintn—2—im—1-j).
isi—2j

An examination of the boundary conditions shows that this recurrence applies
whenever — o0 <m < o0 and n # 0. A final application of the boundary conditions
hence yields

tHnmy =" (n — L,m)y + Y. Yol (n—2 —im — 1~ j)
[

-2
Y gtn—2—im—1 (n#0, — o0 <m< ).
i=0
Define the ordinary bivariate generating function:

H(z,w) défZZt%"(n,m)z"w"‘. (10)

! Coined by H. Wilf.
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Multiplying both sides of the above recurrence by z"w™ and summing over the allowed
ranges of n and m yields
-2
H(z,w) = Y t;/(0,m)w™ = zH(z,w) + yz*wH(z,w)* — ywz?H(z,w) Y 7.

i=0
Thus H is obtained as a root of the quadratic

ywzzH(z,w)z—(l—z+ywz Z )H(z w)+1=0.

Define
1 1—z
_ — 11

P(z,w) 1—z4+ywz?YI23z20 1 =2z + (1 4+ yw)z? — ywz'*!? b

Then
H(z,w)
ol 2 _ 1=0.
pweH(z W) — S+

The boundary conditions specify which root of the quadratic is permissible. We hence
have

H(z,w) = ! [1—\/1 4ywzzP(z,w)2:l. (12)

2ywz?P(z, w)

The above expression for the generating function H is nice and compact, and for
general values of | this may be all we can hope for. For special values of /, however, we
can go further. Before we proceed, let us detour through a hypergeometric identity.

Lemma 1. Let a be any real number, m a positive integer, and c any real number which is
not zero or a negative integer. Then

2Fl(a,:m 1)=(c+m—a——1)~

(c+m—-1)=
Proof. Let us begin with the familiar convolution identity (“Vandermonde’s convolu-
tion”)

L)) ()

valid for any real r and s and integer m. (It is easy to verify equality above by
multiplying both sides by x™ and summing over all m to obtain the same generating
function (1 + x)"** for both sides.) Anticipating later algebraic simplification, let
a= —rand ¢c=s—m+ 1, and write the sum on the left-hand side as

—a\N{c+m— 1)\ gef
S = = Sp.
hzz:o(h )( m—h ) hgoh
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We then have

c+m—1
So = m s

and for h > 0, we have the term ratios

Sh+1 :(.h:-ﬂl)(rcntnl::} :(h+a)(h—m) 1 (13)
Sh (A" (h+c¢) (h+1)

The term ratios s, /s, are hence rational functions of h; it follows that S can be
expressed in terms of a hypergeometric series (cf. [ 1], for instance). It is easy to verify
that for a general hypergeometric series

k h _h

F (al""aam Z>— Z ay - amz def Z f

mi n - = =7y h>
by,....b, St R

we have f, = 1, while the term ratios f,, ,/ f, satisfy

f£+_1=(h+a1) - (h+a,) z
Joo o (htby) - (h+by)(h+1)

(14)

ie, the term ratios f,,,/f, are rational functions of h. Comparing (13) with the
standard form (14), we hence obtain
1).

a,—m c+m—1 a, —m
S DA F

But, by Vandermonde’s convolution,

S=<c+m~a—1)'
m

Equating the two forms for S gives the desired result. []

Extend the definition of Catalan numbers, given in (1), to all integers h by

c {0 if h<0,
P G if k0.

For general x, we then have the familiar identity

1 - /1 —4x) = 1‘;[1 - (1{12>( - 1)"22"x":t =Y Cpx"*1,
h

h>=0

where we have again invoked (8). Substituting in (12) we obtain

H(z,w) =) Cyy'whz?"P(z,w)*"* 1. (15)
[
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Case 1: | = 1 — structures with no loop constraints. In (11), P(z,w) = 1/(1 —z). It
follows therefore that

P(z,w) =(1 —z)"=z<—ir>(_z)i=z(r+i‘- 1)21..

i i l

Substituting in (15), we now have

H(Z,W)=22Ch( )VhZZHiwh:ZZCm( n )ymznwm,
h i n m n—2m

where the second equation follows with the substitutions n«2h +i and m« h.
Comparing term by term with (10) we have

2h +i
i

o1 = § il =20m=0
L (mm) (m,m,n——2m>m+1 (n>0;m>0),

in accordance with the results of the direct argument leading to Assertion 1. Now

' n)= Y ol(nm)y= Y (m " >my+1

m=0 m>0 ,mn — 2m

is the total number of depth-1 structures on {1,...,n}. (See Assertion 3 for an
alternative form.) Writing

def
tin) = Y sn

m=0
it is easy to see that the sum is a hypergeometric series. Indeed, s, = 1, and form > 0
the term ratios
Swer_(m—n+Hm—1in) 4
Sm (m+2) m+1)

are rational functions of m. The following assertion now follows by comparison with
the standard form (14) for the term ratios.

Assertion 5. For any match probability y and sequence length n,

o).

Note that for n > 1 — the cases n =0 and n =1 are trivial — either —n/2 or
— (n — 1)/2 is a negative integer. Thus, when y = 1/4, Lemma 1 applies and the above
hypergeometric series yields the simple closed form of Assertion 2. For general values
of y, however, the hypergeometric does not yield a simple closed form.

1 1 1
—2h+3,—2h
t;’l(")=2F1< 2

Case 2: | = 2 — structures where adjacent elements cannot be matched. That is, any
nested set of matched parentheses must have at least one unmatched node in the
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center:
(¢ M) ete.
From (11) we have

P(z,w)y =(1 —z +ywz?)™"

(7)o

= ZZ( - l)iﬁ( _l r)<;>?jzi+iwf.

Subtituting in (15) gives
"y —2h — i . . ,
H(z,w)=ZZZ(_1);+JCh< i 1)(;>yh+122h+1+1wh+1
hoioj
2h —1\(n—m—h
—_ n—2h n_n..m
,gg‘; 1) Ch( e h)( m—h >yzw , (16)

where the second equation obtains from the successive replacements m « h + j and
n«<m + h + i. Using the simple identity

—2h—1 — (= 1) -m-h —m+h
n—m-—h n—m-—h

we can now compare (10) and (16) to obtain

1.2 _ _ ym—h n—m+h\/{n—m—h\{2h\ y"

n—m-+h P
=2 (= : 17
hg()( ) (haham—h;n_zm)h'l'l ( )

The multinomial coefficients in the summand will be nonzero only when the following
conditions hold simultaneously: 0 < h < m < n/2. In particular, t;'*(n,m) = 0 when
m <0 or n < 2m, as required by the boundary conditions. The case n = 2m is of
interest as the boundary conditions require

1 ifm=0
12 (2m,m) = ’
" (2m, m) {Oifm#u

For notational expedience, define

_ 1,2 o om _ {ym—h m+h 1
ﬂm—t)’ (zm’m)—)} hzz:o( 1) (h,h,m—h)h-*—l'

The following lemma shows that the boundary conditions are indeed satisfied.
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Lemma 2.

Y (=1 m+h | 1 for m=0,
P h,h,m —h h+1 0 for m #£0.

Proof. The case m < 0 is obvious as m — h <0 (h > 0). It suffices hence to show
Bm = 0 (m > 0). Consider the generating function B(x) =Y, f.X™. Substituting for
B, wWe have

2h

h=0 m>=0

-2 (5 ),,H,;(%)

the first equation following by replacing the multinomial by a product of binomials,
and the second equation resulting from the substitution 7« m + h. Recalling the
simple identities

t

y _ N, .
W—Z(t)y (integer t > 0)

20

and

we now have

1 1 (2
—(1-J1-4p =Y —
5 y)h§m+1 h)ﬂ
1

1 2h x h
B =4 +x>,§o( h )h+ 1[(1 +x)2}
_ 1 (1+x)2(1 &
T +x) 2x A (L +x)?

_(U+x)f 1-x
T 2x T l4x

=1.

The claim is proved. []
To complete verification of the boundary conditions, consider
m + h ,ym
tl 2 O . o h m
(n, h%( ) (hhm—hn—th+1
_(n)\ 1 for n=9,
“\n/) |0 forn<0,
as was to be verified.
Finally, consider n > 1, m > 1. Eq. (17) admits of further simplification.

m=0



A. Orlitsky, S.S. Venkatesh | Discrete Applied Mathematics 64 (1996) 151178

Assertion 6. For any match probability 7y,

1 /n— —m
z;'z(n,m)=—(" '”)(" " 1);;"- n=1m>1).

m\m+1 m—1

Proof. Write R = t,'%(n,m) for simplicity. Using (17), set

—m+h 1
= Y (= PTmE - ,
R=2(=D (h,h,m—h,n—Zm PSRN

h20 h>=0

Assume, without loss of generality, that 1 < m < n/2. Then

n—m
ro=(— 1)"'(n B 2m>v"‘

is nonzero; further, for h > 0,

rher _(h+n—m+1)(h—m) 1
oo (h +2) (h+ 1)

175

(18)

so that the term ratios are rational functions of h. Comparing with the standard form

(14), it follows that

— +1,_
R=r02F1<n m2 mll).

Using Lemma 1 and the expression for r,, we finally obtain

Rz(_l)m(n—m)(—n+2m)'1‘”m

n—2m/ (m+1)*

_ n=m) (n=2m)"
C(n—2m!m! (m+ 1)

_ (n—m) n—m—1) m
Tmlin=2m)l(m+ Dl(n—2m— 1! "

Simple algebraic manipulations complete the proof. []

Schmidtt and Waterman [2] have also recently demonstrated Assertion 6 (for
y = 1). Their approach, in sharp contradistinction to the straightforward combina-
torial attack on the generating function espoused here, involves an ingenious, nonin-
tuitive transformation of the problem to a combinatorial problem on linear trees for

which there is a known solution.

For fixed n, we can now find the value of m for which t}+%(n, m) is maximized. As for
the depth-1, arbitrary loop length / > 1 case, the maximum will occur when m is
proportional to n. Accordingly, suppose m = an where a = @(1). Stirling’s approxi-
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mation applied to (18) then gives

1 1
t;'z(n,m) = T 22nih(@,a, 1 - 2a) - hia) +al0g./7) (1 +0 (;))

1 22n(h(2a) ~h(a)+a(2 ‘HOS\/’;)) (1 +0 (l)) .

2na’n? n

By differentiation, the exponent

0(a) = 2n(h(2a) — h(a) + a(2 + log~/7))

achieves its maximum when a attains a unique value a* in the range [0,0.2764)
given by

1

=3 )

Simple algebra shows then that the exponent maximum is given by

0(a) = 2niog =) = 2n(~ 1 +log(1 +/T+ 4/

This argument has neglected the nonexponential part of t}°(n,m). As before, this can
affect the location of the maximum by at most a constant term. Thus, we have shown:

Theorem 5. The expected number t;*(n,m) of depth-1, order-m, loop length | > 2
structures on {1, ...,n} that are valid for a random sequence with match probability y is
maximized when m attains a value

m* =1(1 ————1*—>n+0(1)
2\ J1+4sy ’

and its value then is

1+4 1/1 4 2n

g =D LIV (1 o(1)),
r(1+ 27— /1 +4/0)" 2 "

An interpolative approach similar to that for the case / =1 can be used to

determine the O(1) term in m*. This will require determining the roots of a fourth-

degree polynomial.
When y = 1 we have the interesting result

' o 5 ¢2n l _ ¢2n
t% z(n,m )—m?(l + O(;)) = G( n2 ),

where ¢ = (1 + /5)/2 ~ 1.618 is the golden ratio.
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As for the depth-1, arbitrary loop length /> 1 case, we can represent
t22(n) = Y msotsy?(n,m) as a simple hypergeometric. Using Assertion 5, write
l/n—m\(n—m-—1 def

t123(n) =1 = "= :

o= 2ot ¥ e
The term ratios

Gm+1 _(m—gn+ D)(m—3n+3)(m—3n+3)(m—13n) 16y

Im (m+2)(m—n+1)(m—n) (m+1)

are rational functions of m and g, = 1. Comparing with the standard form (14), we
have hence shown the following identity.

Assertion 7. For any match probability y and sequence length n,

16y>.

While simple closed forms do not exist for t)'*(n) for general values of y, an
application of Theorem 5 shows that

logt;'z(n)~2nlog(l+ 12+4ﬁ> (n = )

1 1 1 1 1 1
—zn+1l, —sn+3,—3n+3, —3n

ti'z(n)=“F3( 2, —n+1,—n

and, in particular,
logti*(n) ~2nlogg (n - o).
Theorem 5 also implies that a typical depth-1, loop length > 2 structure has order

h

2(1‘71—%@)

In particular, for y = 1 a typical (d = 1; | > 2) structure has approximately 0.276n
matching base-pairs, while for uniformly distributed RNA sequences (y = 1/4) a typi-
cal (d = 1; I > 2) structure has approximately 0.211n matching base-pairs.

Case 3: | > 3 — structures with matching pairs separated by at least two elements. In
this case (11) gives

Y —7 (1_21—1) h

P(z,w) _2;.:( i )(—1)"2"(1—7““27:7)
r+h—1\(h iiionripei (L =271

hz( h )(i)(_l)”z T

k[ rth—1 AN(T+]— U\ i pvivjera-1)
;.,;,-,k( 1) ( b )(z j K )7E .

(1 + o(1)).
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Thus,

. 2g+h\[(h\/[i
H(zw)= ) (—1)‘+kcg< g;— )(J(;)
guhi gk

y (1 +J." 1)7g+iwg+izzg+h+i+j+k(l—1)_

J
Substitutingn«2g +h +i+j+ k(I — 1), m « g + i in turn, we obtain
1 29+ h
M (n,m) = ym — qymr-9tk
’ (n m) ' g,%,:k( ) g+1(k’m_g_k,h“m+g’g’g>

(n—Zg—h—kl—l)
X .
m—g—1

It does not seem likely that the expression above can be further simplified to obtain
a simple closed form for general values of /; for such cases we have to be satisfied with
the compact form (12) for the generating function.
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