
Optimal Stopping and E�ective MachineComplexity in LearningChangfeng WangDepartment of Systems Sci. and Eng.University of PennsylvaniaPhiladelphia, PA, U.S.A. 19104 Santosh S. VenkateshDepartment of Electrical EngineeringUniversity of PennsylvaniaPhiladelphia, PA, U.S.A. 19104J. Stephen JuddSiemens Corporate Research755 College Rd. East,Princeton, NJ, U.S.A. 08540AbstractWe study the problem of when to stop learning a class of feedforward networks{ networks with linear outputs neuron and �xed input weights { when they aretrained with a gradient descent algorithm on a �nite number of examples. Undergeneral regularity conditions, it is shown that there are in general three distinctphases in the generalization performance in the learning process, and in particular,the network has better generalization performance when learning is stopped at acertain time before the global minimum of the empirical error is reached. A notionof e�ective size of a machine is de�ned and used to explain the trade-o� betweenthe complexity of the machine and the training error in the learning process.The study leads naturally to a network size selection criterion, which turns out tobe a generalization of Akaike's Information Criterion for the learning process. It isshown that stopping learning before the global minimum of the empirical error hasthe e�ect of network size selection.1 INTRODUCTIONThe primary goal of learning in neural nets is to �nd a network that gives valid generalization. Inachieving this goal, a central issue is the trade-o� between the training error and network complexity.This usually reduces to a problem of network size selection, which has drawn much research e�ort inrecent years. Various principles, theories, and intuitions, including Occam's razor, statistical modelselection criteria such as Akaike's Information Criterion (AIC) [1] and many others [5, 1, 10, 3, 11] allquantitatively support the following PAC prescription: between two machines which have the sameempirical error, the machine with smaller VC-dimension generalizes better. However, it is notedthat these methods or criteria do not necessarily lead to optimal (or nearly optimal) generalizationperformance. Furthermore, all of these methods are valid only at the global minimum of the empiricalerror function (e.g, the likelihood function for AIC), and it is not clear by these methods how thegeneralization error is e�ected by network complexity or, more generally, how a network generalizesduring the learning process. This paper addresses these issues.



2 THE LEARNING MACHINE 2Recently, it has often been observed that when a network is trained by a gradient descentalgorithm, there exists a critical region in the training epochs where the trained network generalizesbest, and after that region the generalization error will increase (frequently called over-training). Ournumerical experiments with gradient-type algorithms in training feedforward networks also indicatethat in this critical region, as long as the network is large enough to learn the examples, the sizeof the network plays little role in the (best) generalization performance of the network. Does thismean we must revise Occam's principle? How should one de�ne the complexity of a network and goabout tuning it to optimize generalization performance? When should one stop learning? Althoughrelevant learning processes were treated by numerous authors [2, 6, 7, 4], the formal theoreticalstudies of these problems are abeyant.Under rather general regularity conditions (Section 1), we give in Section 2 a theorem whichrelates the generalization error at each epoch of learning to that at the global minimum of thetraining error. Its consequence is that for any linear machine whose VC-dimension is �nite but largeenough to learn the target concept, the number of iterations needed for the best generalization tooccur is at the order of the logarithm of the sample size, rather than at the global minimum ofthe training error; it also provides bounds on the improvement expected. Section 3 deals with therelation between the size of the machine and generalization error by appealing to the concept ofe�ective size. Section 4 concerns the application of these results to the problem of network sizeselection, where the AIC is generalized to cover the time evolution of the learning process. Finally,we conclude the paper with comments on practical implementation and further research in thisdirection.2 THE LEARNING MACHINEThe machine we consider accepts input vectors X from an arbitrary input space and produces scalaroutputs y = dXi=1  i(X)��i + � =  (X)0�� + �: (1)Here, �� = (��1; : : : ; ��d)0 is a �xed vector of real weights, for each i,  i(X) is a �xed real functionof the inputs, with  (X) = � 1(X); : : : ;  d(X)�0 the corresponding vector of functions, and � is arandom noise term. The machine (1) can be thought of as a feedforward neural network with a �xedfront end and variable weights at the output. In particular, the functions  i can represent �xedpolynomials (higher-order or sigma-pi neural networks), radial basis functions with �xed centers, a�xed hidden-layer of sigmoidal neurons, or simply a linear map. In this context, N. J. Nilsson [8]has called similar structures �-machines.We consider the problem of learning from examples a relationship between a random variable Yand an n-dimensional random vector X:We assume that this function is given by (1) for some �xedinteger d; the random vector X and random variable � are de�ned on the same probability space,that E [�jX ] = 0, and �2(X) = Var(�jX) = constant <1 almost surely. The smallest eigenvalue ofthe matrix  (x) (x) is assumed to be bounded from below by the inverse of some square integrablefunction.Note that it can be shown that the VC-dimension of the class of �-machines with d neuronsis d under the last assumption. The learning-theoretic properties of the system will be determinedlargely by the eigen structure of �. Accordingly, let �1 � �2 � � � � � �d denote the eigenvalues of �.The goal of the learning is to �nd the true concept � given independently drawn examples (X; y)from (1). Given any hypothesis (vector) w = (w1; : : : ; wd)0 for consideration as an approximationto the true concept �, the performance measure we use is the mean-square prediction (or ensemble)error E(w) = E �y � (X)0w�2: (2)Note that the true concept �� is the mean-square solution�� = argminw E(w) = ��1E � (X)y�; (3)



3 GENERALIZATION DYNAMICS AND STOPPING TIME 3and the minimum prediction error is given by E(�) = minw E(w) = �2.Let n be the number of samples of (X;Y ). We assume that an independent, identicallydistributed sample (X(1); y(1)), : : : , (X(n); y(n)), generated according to the joint distributionof (X;Y ) induced by (1), is provided to the learner. To simplify notation, de�ne the matrix	 � � (X(1)) � � �  (X(n)) � and the corresponding vector of outputs y = �y(1); : : : ; y(n)�0. Inanalogy with (2) de�ne the empirical error on the sample byÊ(w) � 12n lXj=1 �y(j) � �X(j)�0w�2 = 12nky �	0wk2;Let �̂ denote the hypothesis vector for which the empirical error on the sample is minimized:rwÊ(�̂) = 0. Analogously with (3) we can then show that�̂ = (		0)�1	y = �̂�1� 1n	y� ; (4)where �̂ = 1n		0 is the empirical covariance matrix, which is almost surely nonsingular for large n.The terms in (4) are the empirical counterparts of the ensemble averages in (3).The gradient descent algorithm is given by:�t+1 = �t � �5�En(�t); (5)where � = (�1; �2; : : : ; �3 )0, t is the number of iterations, and � is the rate of learning. From thiswe can get �t = (I ��(t))�̂ +�(t)�0; (6)where �(t) = (I � ��̂)t; and �0 is the initial weight vector.The limit of �t is �̂ when t goes to in�nity, provided �̂ is positive de�nite and the learning rate� is small enough (i.e., smaller than the smallest eigenvalue of �̂). This implies that the gradientdescent algorithm converges to the least squares solution, starting from any point in Rn.3 GENERALIZATION DYNAMICS AND STOPPING TIME3.1 MAIN THEOREM OF GENERALIZATION DYNAMICSEven if the true concept (i.e., the precise relation between Y and X in the current problem) is in theclass of models we consider, it is usually hopeless to �nd it using only a �nite number of examples,except in some trivial cases. Our goal is hence less ambitious; we seek to �nd the best approximationof the true concept, the approach entailing a minimization of the training or empirical error, andthen taking the global minimum of the empirical error �̂ as the approximation. As we have seen theprocedure is unbiased and consistent. Does this then imply that training should always be carriedout to the limit? Surprisingly, the answer is no. This assertion follows from the next theorem.Theorem 3.1 Let Mn > 0 be an arbitrary real constant (possibly depending on n), and supposeassumptions A1 to A3 are satis�ed; then the generalization dynamics in the training process aregoverned by the following equation:E(�t) = E(�1) + dXi=1 ��i�2i (1� ��i)2t � 2�2n (1� ��i)t[1� 12(1� ��i)t]�+O �M2nn + n� 32�uniformly for all initial weight vectors, �0 in the d-dimensional ball f�� + � : k�k � Mn; � 2 Rdg,and for all t > 0. 2



3 GENERALIZATION DYNAMICS AND STOPPING TIME 43.2 THREE PHASES IN GENERALIZATIONBy Theorem 3.1, the mean generalization error at each epoch of the training process is characterizedby the following function:�(t) � dXi=1 ��i�2i (1� ��i)2t � 2�2n (1� ��i)t[1� 12(1� ��i)t]� :The analysis of the evolution of generalization with training is facilitated by treating �(�) as afunction of a continuous time parameter t. We will show that there are three distinct phases ingeneralization dynamics. These results are given in the following in form by several corollaries ofTheorem 3.1.Without loss of generality, we assume the initial weight vector is picked up in a region withk�k �Mn = O(n0), and in particular, j�j = O(n0). Let rt = ln(1=[1���d])lnn t; then for all 0 � t < t1 �lnn2 ln(1=[1���d]) , we have 0 � rt < 12 , and thusdXi=1 �i�2i (1� ��d)2t = O( 1n2rt ) >> O( 1n1+rt ) = 2�2n dXi=1(1� ��i)t:The quantity �2i (1� ��i)2t in the �rst term of the above inequalities is related to the elimination ofinitial error, and can be de�ned as the approximation error (or �tting error); the last term is relatedto the e�ective complexity of the network at t (in fact, an order O( 1n ) shift of the complexity error).The de�nition and observations here will be discussed in more detail in the next section.We call the learning process during the time interval 0 � t � t1 the �rst phase of learning.Since in this interval �(t) = O(n�2rt) is a monotonically decreasing function of t, the generalizationerror decreases monotonically in the �rst phase of learning. At the end of �rst phase of learning�(t1) = O( 1n ), therefore the generalization error is E(�t1) = E(�1) +O( 1n ). As a summary of thesestatements we have the following corollary.Corollary 3.2 In the �rst phase of learning, the complexity error is dominated by the approximationerror, and within an order of O( 1n ), the generalization error decreases monotonically in the learningprocess to E(�1) +O( 1n ) at the end of �rst phase. 2For t > t1, we can show by Theorem 3.1 that the generalization dynamics is given by the followingequation, where �t1 � �(t1)� ��,EG(�t1+t) = EG(�0)� 2�2n dXi=1(1� ��i)t �1� 12 �1 + �2i � (1� ��i)t�+O(n� 32 );where �2i � �i�2i (t1)n=�2, which is, with probability approaching one, of order O(n0).Without causing confusion, we still use �(�) for the new time-varying part of the generalizationerror. The function �(�) has much more complex behavior after t1 than in the �rst phase of learning.As we will see, it decreases for some time, and �nally begins to increase again. In particular, wefound the best generalization at that t where �(t) is minimized. (It is noted that �t1 is a randomvariable now, and the following statements of the generalization dynamics are in the sense of withprobability approaching one as n!1.)De�ne the optimal stopping time: tmin � argminfE(�t) : t 2 [0;1]g, i.e., the epoch corre-sponding to the smallest generalization error. Then we can prove the following corollaries:Corollary 3.3 The optimal stopping time tmin = O(lnn), provided �2 > 0. In particular, thefollowing inequalities hold:1. t` � tmin � tu; where t` � t1 + mini ln(1+�2i )ln(1=[1���i]) and tu � t1 + maxi ln(1+�2i )ln(1=[1���i]) are both�nite real numbers. That is, the smallest generalization occurs before the global minimumof the empirical error is reached.



4 THE EFFECTIVE SIZE OF THE MACHINE 52. �(�) (tracking the generalization error) decreases monotonically for t < t` and increasesmonotonically to zero for t > tu; furthermore, tmin is unique if t` + ln 2ln(1=[1���1]) � tu:3. ��2n Pdi=1 11+�2i � �(tmin) � ��2n 2d1+ [ 2+1 dd+�2 ] ; where  = ln(1���1)ln(1���d) , and �2 =Pdi=1 �2i :In accordance with our earlier de�nitions, we call the learning process during the time intervalbetween t1 and tu the second phase of learning; and the rest of time the third phase of learning.According to Corollary 3.3, for t > tu su�ciently large, the generalization error is uniformlybetter than at the global minimum, �̂, of the empirical error, although minimum generalization erroris achieved between t` and tu: The generalization error is reduced by at least ��2n 2d1+ [ 2+1 dd+�2 ]over that for �̂ if we stop training at a proper time. For a �xed number of learning examples,the larger is the ratio d=n, the larger is the improvement in generalization error if the algorithm isstopped before the global minimum �� is reached.4 THE EFFECTIVE SIZE OF THE MACHINEOur concentration on dynamics and our seeming disregard for complexity do not conict with thelearning-theoretic focus on VC-dimension; in fact, the two attitudes �t nicely together. This sectionexplains the generalization dynamics by introducing the the concept of e�ective complexity of themachine. It is argued that early stopping in e�ect sets the e�ective size of the network to a valuesmaller than its VC-dimension.The e�ective size of the machine at time t is de�ned to be d(t) �Pdi=1 [1� (1� ��i)t]2; whichincreases monotonically to d, the VC-dimension of the network, as t!1. This de�nition is justi�edafter the following theorem:Theorem 4.1 Under the assumptions of Theorem 3.1, the following equation holds uniformly forall �0 such that j�j �Mn, E(�t) = E(��; t) + �2n d(t) +O(M2nn + n� 32 ) (7)where E(��; t) = E(��) +Pdi=1 �2i �i(1� ��i)2t. 2In the limit of learning, we have by letting t!1 in the above equation,E(�̂) = E(��) + �2n d+O(n� 32 ) (8)Hence, to an order of O(n�1:5), the generalization error at the limit of training breaks into two parts:the approximation error E(��), and the complexity error dn�2. Clearly, the latter is proportional tod, the VC-dimension of the network. For all d's larger than necessary, E(��) remains a constant,and the generalization error is determined solely by dn . The term E(��; t) di�ers from E(��) only interms of initial error, and is identi�ed to be the approximation error at t. Comparison of the abovetwo equations thus shows that it is reasonable to de�ne �2n d(t) as the complexity error at t, andjusti�es the de�nition of d(t) as the e�ective size of the machine at the same time. The quantityd(t) captures the notion of the degree to which the capacity of the machine is used at t. It dependson the machine parameters, the algorithm being used, and the marginal distribution of X. Thus, wesee from (7) that the generalization error at epoch t falls into the same two parts as it does at thelimit: the approximation error (�tting error) and the complexity error (determined by the e�ectivesize of the machine).As we have show in the last section, during the �rst phase of learning, the complexity error is ofhigher order in n compared to the �tting error during the �rst phase of learning, if the initial erroris of order O(n0) or larger. Thus decrease of the �tting error (which is proportional to the trainingerror, as we will see in the next section) implies the decrease of the generalization error. However,



5 NETWORK SIZE SELECTION 6when the �tting error is brought down to the order O( 1n ), the decrease of �tting error will no longerimply the decrease of the generalization error. In fact, by the above theorem, the generalizationerror at t+ t1 can be written asE(�t+t1) = E(��) + dXi=1 �i�i(t1)2(1� ��i)2t + �2n d(t) +O(n� 32 ):The �tting error and the complexity error compete at orderO( 1n ) during the second phase of learning.After the second the phase of learning, the complexity error dominates the �tting error, still at theorder of O( 1n ). Furthermore, if we de�ne � � 11+ [ 2+1 dd+�2 ] , then by the above equation and (3.3),we haveCorollary 4.2 At the optimal stopping time, the following upper bound on the generalization errorholds, E(�tmin) � E(��) + �2n (1� �)d+O(n� 32 ):Since � is a quantity of order O(n0), (1� �)d is strictly smaller than d. Thus stopping training attmin has the same e�ect as using a smaller machine of size less than (1� �)d and carrying trainingout to the limit! A more detailed analysis reveals how the e�ective size of the machine is a�ectedby each neuron in the learning process (omitted due to the space limit).Remark: The concept of e�ective size of the machine can be de�ned similarly for an arbitrarystarting point. However, to compare the degree to which the capacity of the machine has been usedat t, one must specify at what distance between the hypothesis � and the truth �� is such compari-son started. While each point in the d-dimensional Euclidean space can be regarded as a hypothesis(machine) about ��, it is intuitively clear that each of these machines has a di�erent capacity toapproximate it. But it is reasonable to think that all of the machines that are on the same spheref� : j� � ��j = rg, for each r > 0, have the same capacity in approximating ��. Thus, to comparethe capacity being used at t, we must specify a speci�c sphere as the starting point; de�ning thee�ective size of the machine at t without specifying the starting sphere is clearly meaningless. Aswe have seen, r � 1pn is found to be a good choice for our purposes.5 NETWORK SIZE SELECTIONThe next theorem relates the generalization error and training error at each epoch of learning, andforms the basis for choosing the optimal stopping time as well as the best size of the machine duringthe learning process. In the limit of the learning process, the criterion reduces to the well-knownAkaike Information Criterion (AIC) for statistical model selection. Comparison of the two criteriareveals that our criterion will result in better generalization than AIC, since it incorporates theinformation of each individual neuron rather than just the total number of neurons as in the AIC.Theorem 5.1 Assuming the learning algorithm converges, and the conditions of Theorem 3.1 aresatis�ed; then the following equation holds:E(�t) = (1 + o(1))E En(�t) + c(d; t) + o(1n ) (9)where c(d; t) = 2�2n Pdi=1[1� (1� ��i)t] 2According to this theorem, we �nd an asymptotically unbiased estimate of E(�t) to be En(�t)+C(d; t) when �2 is known. This results in the following criterion for �nding the optimal stoppingtime and network size: minfEn(�t) + C(d; t) : d; t = 1; 2; : : :g (10)



6 CONCLUDING REMARKS 7When t goes to in�nity, the above criterion becomes:minfEn(�̂) + 2�2dn : d = 1; 2; : : :g (11)which is the AIC for choosing the best size of networks. Therefore, (10) can be viewed as anextension of the AIC to the learning process. To understand the di�erences, consider the casewhen � has standard normal distribution N(0; �2): Under this assumption, the Maximum Likelihood(ML) estimation of the weight vectors is the same as the Mean Square estimation. The AIC wasobtained by minimizing E logf�̂(X)logf�(X) ; the Kullback-Leibler distance of the density function f�ML(X)with �ML being the ML estimation of � and that of the true density f�: This is equivalent tominimizing limt!1E (Y � f�t(X))2 = E (Y � f�ML(X))2 (assuming the limit and the expectationare interchangeable). Now it is clear that while AIC chooses networks only at the limit of learning,(10) does this in the whole learning process. Observe that the matrix � is now exactly the FisherInformation Matrix of the density function f�(X); and �i is a measure of the capacity of  i in�tting the relation between X and Y: Therefore our criterion incorporates the information abouteach speci�c neuron provided by the Fisher Information Matrix, which is a measure of how wellthe data �t the model. This implies that there are two aspects in �nding the trade-o� between themodel complexity and the empirical error in order to minimize the generalization error: one is tohave the smallest number of neurons and the other is to minimize the utilization of each neuron.The AIC (and in fact most statistical model selection criteria) are aimed at the former, while ourcriterion incorporates the two aspects at the same time. We have seen in the earlier discussions thatfor a given number of neurons, this is done by using the capacity of each neuron in �tting the dataonly to the degree 1� (1� ��i)tmin rather than to its limit.6 CONCLUDING REMARKSTo the best of our knowledge, the results described in this paper provide for the �rst time a preciselanguage to describe overtraining phenomena in learning machines such as neural networks. Wehave studied formally the generalization process of a linear machine when it is trained with agradient descent algorithm. The concept of e�ective size of a machine was introduced to break thegeneralization error into two parts: the approximation error and the error caused by a complexityterm which is proportional to e�ective size; the former decreases monotonically and the later increasesmonotonically in the learning process. When the machine is trained on a �nite number of examples,there are in general three distinct phases of learning according to the relative magnitude of the�tting and complexity errors. In particular, there exists an optimal stopping time tmin = O (lnn)for minimizing generalization error which occurs before the global minimum of the empirical erroris reached. These results lead to a generalization of the AIC in which the e�ect of certain networkparameters and time of learning are together taken into account in the network size selection process.For practical application of neural networks, these results demonstrate that training a networkto its limits is not desirable. From the learning-theoretic point of view, the concept of e�ectivedimension of a network tells us that we need more than the VC-dimension of a machine to describethe generalization properties of a machine, except in the limit of learning.The generalization of the AIC reveals some unknown facts in statistical model selection theory:namely, the generalization error of a network is a�ected not only by the number of parametersbut also by the degree to which each parameter is actually used in the learning process. Occam'sprinciple therefore stands in a subtler form: Make minimal use of the capacity of a network forencoding the information provided by learning samples.Our results hold for weaker assumptions than were made herein about the distributions of Xand �. The case of machines that have vector (rather than scalar) outputs is a simple generalization.Also, our theorems have recently been generalized to the case of general nonlinear machines and arenot restricted to the squared error loss function.While the problem of inferring a rule from the observational data has been studied for a longtime in learning theory as well as in other context such as in Linear and Nonlinear Regression, the
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