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Abstract: Machine learning for medical imaging not only requires sufficient amounts of data for
training and testing but also that the data be independent. It is common to see highly interdependent
data whenever there are inherent correlations between observations. This is especially to be expected
for sequential imaging data taken from time series. In this study, we evaluate the use of statistical
measures to test the independence of sequential ultrasound image data taken from the same case.
A total of 1180 B-mode liver ultrasound images with 5903 regions of interests were analyzed. The
ultrasound images were taken from two liver disease groups, fibrosis and steatosis, as well as normal
cases. Computer-extracted texture features were then used to train a machine learning (ML) model
for computer-aided diagnosis. The experiment resulted in high two-category diagnosis using logistic
regression, with AUC of 0.928 and high performance of multicategory classification, using random
forest ML, with AUC of 0.917. To evaluate the image region independence for machine learning,
Jenson–Shannon (JS) divergence was used. JS distributions showed that images of normal liver
were independent from each other, while the images from the two disease pathologies were not
independent. To guarantee the generalizability of machine learning models, and to prevent data
leakage, multiple frames of image data acquired of the same object should be tested for independence
before machine learning. Such tests can be applied to real-world medical image problems to determine
if images from the same subject can be used for training.

Keywords: medical imaging; quantitative ultrasound; machine learning; independent data; liver
disease

1. Introduction

Image data availability is vital for the implementation of machine learning (ML)
methods in clinical settings [1,2]. Large datasets with high-quality images are essential
for training, validation, and testing of algorithms for clinical applications. Typically, ML
algorithm performance for predictive tasks increases with increased training data vol-
ume [3–5]. If numerous parameters are to be studied, there is a need to train ML models
commensurately on abundant data to obtain a generalizable model. However, there is
limited access to medical images, and the preparation of image data is a costly and time-
intensive process [6]. Most health care systems are not adequately equipped to share large
numbers of medical images [3]. Medical data are often stored in silos and are not available
in enterprise-wide core clinical systems. These data silos prevent relevant data from being
shared even between departments within the same institution due to the interoperability
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issues of the current institutional enterprise systems [7]. Image data therefore cannot be
accessed easily by AI algorithm development for widespread clinical practice.

In addition to the data availability issues, in ML a common assumption is that the
given data points are realizations of independent random variables [8]. However, this
assumption is often violated when the data points are highly interdependent (e.g., when
the data exhibit temporal or spatial correlations) [9]. Similar scenarios are typical situations
in visual recognition and computational biology [10]. Dependent data arise whenever there
are inherent correlations in between observations. This is to be expected for time series of
imaging data, where we would intuitively expect that instances with similar time stamps
have stronger dependencies than ones that are far away in time.

A common approach to bypass the problem of limited data is to use multiple images
from the same subject as separate training instances for ML [11–14]. However, this approach
raises the question of whether the data are independent. Depending on the independence
assumptions of the learning algorithms, the performance of the resulting models trained
and tested on the same patient(s) and same body region(s) might be inflated, and the
models might not be generalizable to future images. In this situation, the predictive
model developed using conventional ML algorithms could be biased, inaccurate, and tend
to produce unsatisfactory classifiers. A common example where ML algorithms are well
known to exhibit variations in prediction accuracy is when ML is provided with imbalanced
training sets due to the imbalanced ratio of pathological and normal cases typically seen
in medical imaging [15]. Previous studies reported that a close-to-balanced training is
required for best model performance, while data imbalance can have negative influence on
the model performance.

In this study, we propose an approach to test the data independence for building a
reliable diagnostic ML model using a liver disease data images set. For this purpose, we
examined the independence of sequential ultrasound image frames acquired from the same
cases of liver disease. We algorithmically extracted numerical liver texture features from
the ultrasound images for machine learning. All these computer-generated features were
used to train models. The independence between image region grayscale distributions
were quantified by Jensen–Shannon (JS) divergence, a bounded symmetrization of the
unbounded Kullback–Leibler (KL) divergence [16–19]. JS divergence was measured for
B-mode ultrasound images acquired from images of three pathologies: normal cases, and
then two groups of liver disease, namely steatosis (fatty liver) and fibrosis.

2. Methods
2.1. Image Acquisition and Computerized Analysis

1180 B-mode ultrasound images acquired in vivo from rat livers were used for analysis.
The images were taken from 3 different rat groups as follows: 450 images from fibrosis cases
(rats n = 6), 450 images from steatosis cases (rats n = 4), and 280 from normal (rats n = 4).
Four video clips of B-mode images were acquired from each rat in standard transverse and
sagittal imaging planes of the right and left lobes of the liver. Each clip consisted of average
of 25–35 images. Imaging presets (gain = 18 dB, high sensitivity, 100% power, transmit
frequency 21 MHz, and high line density) and time compensation gain were optimized and
standardized.

Five to six identical rectangular regions of interest (ROI) were placed manually on
each image to ensure comprehensive inclusion of multiple representative parts of the liver
parenchyma and exclusion of imaging artifacts such as acoustic shadowing, enhancement,
or reverberation. A total of 5903 regions of interest were placed on the images.

A number of texture features were extracted from the ROIs, which include:

1. First order histogram features: including echo intensity, heterogeneity (regional variance
between ROIs, internal heterogeneity (local variance within ROIs) [20]. Echo intensity
and heterogeneity represent the mean and standard deviation of intensity within an
ROI. Heterogeneity is the standard deviation of the echo intensity between the ROIs
in all the planes measured throughout the liver.
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2. Run length features include gray-level nonuniformity (GLNU) and run length nonuni-
formity (RLNU). These features represent the length of the run, usually the number of
pixels for the horizontal or vertical scan direction, or the number of pixels multiplied
by a diagonal direction [21].

3. Entropy: a gray level connectivity texture feature was also studied [21].

All image analysis was performed using a custom application written in the IDL (Inter-
active Data Language) programming language (version 8.5; Harris Geospatial, Broomfield,
CO, USA) [21].

2.2. Feature Statistics and Machine Learning Diagnostic Models

The mean and standard error for the ultrasound texture features of the three different
groups were compared by two-tailed paired Student’s t-tests. p < 0.05 was considered
significant. One-way analysis of variance (ANOVA) was used to compare the difference
between the three study arms. Statistical analysis was performed using MedCalc (version
19.0.5, MedCalc Software Ltd., Ostend, Belgium).

Two classifiers were used for machine learning analysis. Random Forest [22] was
used for multicategory classification, while logistic regression is used for the two groups’
separation. Leave-one-out cross-validation approach (round-robin) was used for training
and testing the data with both classifiers. Training and testing of data were performed
using Weka software (version 3.8.5, University of Waikato, Hamilton, New Zealand) [23].

2.3. Intra- and Inter-Case Divergence Analysis

Jenson–Shannon (JS) divergence [16–19] was used to quantify the difference in grayscale
distribution between two regions, for both intracase and intercase sampling. JS divergence
offers an information-theoretic set-similarity measure that works naturally for pair-wise
comparisons. To evaluate intra- and inter-divergence, we compared intracase to intercase
pairs, calculating JS divergence for every pair. Intracase pairs were sampled for every pos-
sible time shift, and their divergence distributions were then tested against the divergence
distribution of the intercase region pairs. The goal was to find the minimum time difference
between image regions of the same case such that their divergences were distributed simi-
larly to regions sample from completely different subjects. For each test at each time shift,
the null hypothesis was that the distributions were different, so we performed a t-test for
significant similarity or equivalence (not the more common Student’s t-test for significant
difference) [24].

For equivalence, to demonstrate a “lack of difference”: The t-test for equivalence,
where δ depends on how much nonequivalence is acceptable in the research study. In
our example, we were unwilling to accept more than 5% reduction in intra-divergence
compared to inter-divergence, so we set δ equal to 0.05 M1 (where the 1 subscript indicates
inter, and 2 subscript indicates intra):

t(d f ) =
M1 − M2 − δ√[

(n1−1)σ2
1−(n2−1)σ2

2
n1+n2−2 ×

[
1

n1
1

n2

]]
The denominator is simply the standard error; df is degrees of freedom or n1 + n2 − 2;

and the M is mean. This was a one-sided test in this study, because we wanted to prove
that intrasampled cases do not have significantly lower divergence than intercases. It is a
noninferiority test because we wanted to prove that choosing our samples from intracases
performed no worse than choosing from our intercases.

3. Histopathologic Validation

Liver disease was confirmed by histopathological examination. The liver lobes were
assessed in a blind fashion by a vet pathologist for fibrosis and lipidosis on gross pathology.
Portions of liver were preserved in 10% phosphate-buffered formalin and transferred to
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50% ethanol after 48 to 72 h and then embedded in paraffin and processed for histological
examination with hematoxylin and eosin (H&E) and trichrome staining. Each histologic
section was graded according to the METAVIR scoring system for fibrosis. Lipidosis
was investigated in addition to presence of balloon cells, which is critical to finding fatty
liver changes.

4. Results
4.1. The Classification Performance of Ultrasound Features

All features showed statistically significant differences between the three groups.
Table 1 shows the difference in mean values of liver texture ultrasound features between
the three groups.

Table 1. Mean ± standard errors of liver texture ultrasound features studied for the three liver
pathologies. Two-sided t-test p-values are shown for each group against the other two groups.
p < 0.05 is considered significant.

Quantitative
Ultrasound Features Steatosis Fibrosis Normal

p-Value:
Fibrosis vs.
Steatosis

p-Value:
Fibrosis vs.

Normal

p-Value:
Steatosis vs.

Normal

Echo intensity 34.7 ± 12.0 55.9 ± 16.3 25.4 ± 13.6 0.00 0.00 0.00
Heterogeneity 14.6 ± 3.7 20.5 ± 3.9 12.7 ± 4.7 0.00 0.00 0.0

Internal Heterogeneity 12.0 ± 1.2 16.3 ± 2.4 13.2 ± 1.8 0.00 0.00 00
GLNU 0.3 ± 0.1 0.3 ± 0.0 0.4 ± 0.2 0.00 4.37 × 10−52 0.00
RLNU 0.2 ± 0.0 0.2 ± 0.0 0.3 ± 0.1 0.00 1.7 × 10−68 2.914 × 10−72

Entropy 3.5 ± 0.2 4.5 ± 0.18 3.1 ± 0.5 0.00 2.4 × 10−116 2.64 × 10−123

Logistic regression two-class analysis showed high performance. First, the model was
able to detect the disease from normal cases with AUC 0.917 (Figure 1). Then, differentiation
of the two liver disease groups, namely steatosis and fibrosis, showed a very high diagnostic
performance with AUC of 0.928.
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Figure 1. The diagnostic performance of quantitative liver texture ultrasound features using logistic
regression (LR) machine learning for two-step pathology differentiation. (A) shows the diagnostic
performance of ultrasound texture features in differentiating normal from liver disease including both
fibrosis and steatosis cases, while (B) demonstrates the diagnostic performance of ultrasound features
in differentiating steatosis from fibrosis cases. AUC refers to area under the curve, Sn: sensitivity, and
Sp: specificity.

Random forest learning for multicategory classification also showed high performance
in differentiation of the three groups (Figure 2). The model showed that the features can
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differentiate all three groups from each other with high diagnostic performance ranging
from 0.854 to 0.917 with sensitivity up to 83.8 and specificity reaching 83.3.
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Figure 2. ROC curves of the diagnostic performance of quantitative liver texture ultrasound features
using random forest machine learning for multicategory classification. (A) shows the diagnostic
performance of ultrasound features in differentiating fibrosis from the two remaining groups: steatosis
and normal. (B) demonstrates diagnostic performance in differentiating steatosis group from fibrosis
and normal groups. (C) shows the performance of normal cases versus liver disease: fibrosis and
steatosis. AUC refers to area under the curve, Sn: sensitivity, and Sp: specificity.

4.2. Divergence Testing for Image Independence

Of the three tested liver pathologies, only normal cases demonstrated that intracase
region divergence is statistically close to the intersampled case divergence (Table 2, Figure 3).
In Figure 3C, we can observe that the mean divergence for intrasampling was almost the
same as for intersampling.

Table 2. Mean and standard deviation of intra- and inter-case JS divergence values for the three
pathology groups.

JS Divergence Normal Fibrosis Steatosis

Intra 0.01 ± 0.03 0.05 ± 0.05 0.01 ± 0.05
Inter 0.01 ± 0.03 0.07 ± 0.08 0.03 ± 0.05



AI 2022, 3 744

AI 2022, 3, FOR PEER REVIEW 6 
 

Table 2. Mean and standard deviation of intra- and inter-case JS divergence values for the three 
pathology groups. 

JS Divergence Normal Fibrosis Steatosis 
Intra 0.01 ± 0.03 0.05 ± 0.05 0.01 ± 0.05 
Inter 0.01 ± 0.03 0.07 ± 0.08 0.03 ± 0.05 

 

(A) 
 

(B) 

 

(C) 

Figure 3. Panels (A,B) show examples of B-mode ultrasound liver images taken from two normal 
cases. Panel (A) shows three sequential images from the same case with region of interests (ROIs) 
for quantitative analysis. Panel (B) shows three sequential images from a second normal case. Panel 
(C) shows the intra- and intercase JS divergence for normal cases in general. Intra- and intercase 
divergence for normal cases are close to each other, indicating that intrasampled cases may be just 
as independent inter sampling. Five to six regions of interests are placed (red rectangular boxes) on 
each image for quantitative analysis. 

On the other hand, steatosis and fibrosis cases failed the similarity test. Inter-diver-
gence was significantly higher than intra-divergence (Table 2, Figures 4 and 5): regions 

Figure 3. Panels (A,B) show examples of B-mode ultrasound liver images taken from two normal
cases. Panel (A) shows three sequential images from the same case with region of interests (ROIs)
for quantitative analysis. Panel (B) shows three sequential images from a second normal case. Panel
(C) shows the intra- and intercase JS divergence for normal cases in general. Intra- and intercase
divergence for normal cases are close to each other, indicating that intrasampled cases may be just
as independent inter sampling. Five to six regions of interests are placed (red rectangular boxes) on
each image for quantitative analysis.

On the other hand, steatosis and fibrosis cases failed the similarity test. Inter-divergence
was significantly higher than intra-divergence (Table 2, Figures 4 and 5): regions sampled
from different cases were more different than regions sampled from the same case on
different frames within a video, at different time points.
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Panel (A) shows three sequential images from the same case with region of interests (ROIs) for
quantitative analysis. Panel (B) shows three sequential images from a second steatosis case. Panel
(C) displays the intra- and intercase JS divergence for steatosis cases in general. Intra- and intercase
divergence for steatosis cases is far apart, indicating that we cannot claim independence of intrasam-
pling in these cases. Five to six regions of interests are placed (red rectangular boxes) on each image
for quantitative analysis.
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Figure 5. Panels (A,B) show examples of B-mode ultrasound liver images from two fibrosis cases.
Panel (A) shows three sequential images from the same case with region of interests (ROIs) for quanti-
tative analysis. Panel (B) shows three sequential images from another steatosis case. Panel (C) shows
the intra- and intercase JS divergence for fibrosis cases in general. Intra- and intercase divergence
for fibrosis cases is far apart, indicating that we cannot claim independence of intrasampling in
these cases. Five to six regions of interests are placed (red rectangular boxes) on each image for
quantitative analysis.

The ultrasound images examples of the three liver pathologies, in Figures 3–5, demon-
strate that although it is possible to visually distinguish between the images of the three
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groups, the differentiation of cases within a disease group is hard on different frames of the
same cases or between cases.

5. Discussion

For successful application of ML methods in medical imaging research and deploy-
ment of high-performance generalizable models, there is a need for a sufficient number
of training samples from large images databases. We used the common training practice
of adding samples by training on a large number of sequential image frames taken from
the same case. The results of ML models showed high classification performance for the
three studied disease groups. However, when we tested the independence of the sequential
images that were taken from the same case using JS divergence, of the three tested liver
pathologies, only normal cases demonstrated statistically that intracase region divergence
is close to the intersampled case divergence. This means that the normal cases diverged
similarly between patients and within a patient, but for fibrosis and steatosis, samples
within a patient were more similar to each other than samples from different patients. Two
regions sampled from the same normal case were just as different as two regions sampled
from completely different cases according to the t-test for equivalence, within 5%. There-
fore, for normal cases we can reject the null hypothesis that there is a significant difference
between inter- and intrasampling. In general, intra-divergence for all the three groups
was small, but different. Fibrosis showed the highest JS divergence in comparison to other
groups. This finding is expected as fibrosis is often associated with heterogenous tissue
changes between different regions of the liver in comparison to more uniform changes seen
in steatosis [25,26]. Yet, inter- and intracase JS fibrosis divergence are not statistically close
to each other; therefore, we cannot claim that the intracase image frames are independent
enough to train on as separate cases.

The intuition that divergence should increase with time-shift between samples proved
to be incorrect, because any gradual divergence trend was overpowered by the cyclical
effects of breathing motion. Looking at the graphs of divergence with increasing time
change, it is evident that divergence between pairs of sampled regions is periodic, with
a period of 35 frames or 4.5 s. This is believed to be due to breathing. A region sampled
from a later frame will be most similar (less divergent) to a region sampled earlier at the
same relative point in the respiratory cycle and least similar to a region sample out of
phase in the cycle. For all three tested pathologies, but especially steatosis and fibrosis,
divergence change within the breathing cycle was much stronger than divergence drift
over the entire time-course of the study. In theory, if this divergence oscillated perfectly
with constant-period and constant-amplitude cycles, to maximize sampling differences,
maximally out-of-phase time points could be chosen within or even crossing multiple
periods. For instance, if the reference interdivergence was 1, and the respiratory period
was 1 s (1 Hz), then the peak-to-valley maximum divergence between frames within a
cycle would be at half a cycle, or 0.5 s. If the divergence difference over this half-cycle
was at least equal to our reference threshold of 1, then exactly two samples that were
this half-period apart, or some integer multiple of this half period, could be taken for the
*entire* time of the study to ensure that they were as different from each other as two
samples from entirely different cases. All of our data show that, over the time of the study,
the amplitude of the divergence oscillation within a cycle increases over time: in a later
breathing cycle after an earlier reference breathing cycle, a sampled region will diverge
more from the earlier reference sample even when both are still in phase; and if the two
samples are taken out of phase, they will also diverge much more over time. The strongest
guarantee of sufficient divergence would be if the lower bound connecting the out-of-phase
valleys on the increasing-oscillating curve increased by at least the reference intersampling
divergence, but none of these studies showed such an effect, possibly because they were
not long enough.

In this paper, we proposed the use of a statistical preliminary analysis to assess the
quality of the imaging data before constructing an ML model. To our knowledge, the JS
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divergence test has not been evaluated to test the independence of image data. However,
similar preliminary exploratory data analyses have been reported in literature for assessing
the quality of data before going to ML models. One example of the exploratory analysis
reported includes the use of Dynamic Time Warping (DTW) [27,28]. DTE is a measure of
how similar two temporal sequences are in a time series analysis. DTW looks for the optimal
alignment between the two series as opposed to looking at the Euclidean distance between
two points at each time series. DTW was evaluated as a distance metric of fMRI time
series with repeated measurements of an individual subject and showed that DTW analysis
results in more stable connectivity patterns by reducing the within-subject variability and
increasing robustness for preprocessing strategies.

One limitation of this study is that we did not test each of our measured radiomics
features in this way but presented a method to perform it and tested it on a fundamental
image property. Since most features depend somewhat on grayscale distribution, if ROIs
between frames were not independent enough in those distributions, we did not look
further. Grayscale histograms and first-order statistics are perhaps the simplest ways of
characterizing image regions, so if those distributions are significantly more similar within
a case than they are between cases, and more similar at certain regular time intervals
within the clip, then many derived features may behave similarly. An image, though, is a
spatial distribution of grayscale values, and it is very true that engineered features may
only partly depend on the grayscale *value* distribution or may not depend on it at all.
The methodology we presented, though, with enough samples to compare distributions
(i.e., a radiomics image that maps the feature value to each pixel location) could test any
quantitative feature to see if it was independent enough between frames to allow those
frames to count as sufficiently independent images for that measurement. A more in-depth
analysis of sampling divergence behavior over time is, however, beyond the scope of this
research and would not be generalizable to other organs or modalities. The important result
is that different pathologies might have different dependencies when sampling frames from
video, since in this research one of three pathologies passed the independence test: sample
regions between video frames of a normal case are as different from each other as samples
from completely different cases. Future studies will also evaluate the effects of inter- and
intrauser variability in ROI selection on the model performance. The study results are
specific to ultrasound imaging, and findings could have been impacted by factors related to
the choice of animal, tissue, ROI, and analysis. Future studies on a large scale are required
for the proposed approach to be generalized to other imaging modalities and to be applied
in human studies.

6. Conclusions

Whenever image frames taken from same case are used for training machine learning
models, if that model assumes independence between images, an independence test should
be performed. Not only might there be within-case image dependence, but that dependence
also could be related to time separation of samples in a video study, so that enforcing a time
interval between samples could meet the independence assumptions of the model. For our
liver images, however, no such simple time interval could be found, because the periodic
breathing motion was too strong an effect. However, for one of the three pathologies—the
“normal” cases—image frames were as independent within a case as between cases. Such a
result could be important for machine learning. In a clinical setting, it is not uncommon
to acquire more disease images than normal controls, possibly creating an unbalanced
imaging database. The result of this research on liver diseases suggests that it is acceptable
to take many frames of the same normal case as independent training cases, demonstrating
one possible application for thoroughly testing image frames for independence.
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