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ABSTRACTFor a general sequence of non-negative integer-valued random variables
Xn and a fixed integerk ≥ 2, the distribution ofXn modk for fixed n and asymptotic
distributions asn → ∞ are studied by using various mathematical tools. The speed
of convergence is also considered. The convergence to uniformity is linked to several
things, such as Fourier analysis, Weyl’s equidistributiontheorem and convolutions, the
Euler-MacLaurin summation formula, a Tauberian theorem, and Markov chains.

In particular, Euler-Maclaurin summation allows one to write almost a necessary and
sufficient condition for convergence to uniformity, and also explains oscillation on the
way to convergence.

It is shown that in some important special cases, such as binomial, negative binomial,
and Poisson, the exact distributions for fixedn admit closed form formulas in terms of
special functions, the limit being uniform in appropriate limiting paradigms.

Convergence to uniformity can fail when polynomials of lattice variables are consid-
ered. In such cases, results on congruences tell us what the limit distribution will be, and
when the limit will still be uniform.

Extensions to the multidimensional case as well as the case where the modulus itself
is random are indicated, and the theorems are illustrated with many examples and plots.
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1 Introduction

Let X be a non-negative integer-valued random variable, andk ≥ 2 a fixed positive
integer. We study the distribution ofX mod k and interesting functionals, for example
the moments, using a number of mathematical tools. The toolsused include analysis, in
particular Tauberian theorems, Fourier analysis, number theory, asymptotic expansions,
and Markov chains in some special cases. In a more general case of this setting we
consider a sequence of non-negative integer-valued randomvariables, sayXn, and study
the asymptotic distribution ofXn mod k, convergence of the moments, and the rate of
convergence; e.g., is convergence exponentially fast?

The problem we treat here is in some sense a natural extensionof Poincare’s roulette
problem. We do not claim to have broken new ground probabilistically in this article. But
we have given a set of rather pretty calculations and examples, and we have shown how
the same problem is connnected to many classical facets of mathematics. The appeal of
our article is in the connections and the calculations.

The Poisson distribution is an obvious special case. IfXn is Poisson with meann,
then, modulok,Xn admits the recursionXn = Xn−1 +Yn, where theYn sequence is i.i.d.
The modk problem in such a convolution setting arises if one wants to study the position
of a random walker on the non-negative integers, where counting starts over when the
walker reaches or goes past a givenk. The study of the asymptotic aspects of this case
is amenable to classical Markov chain techniques; two specifically relevant references
are Hildebrand (1990) and Diaconis (1992). Hildebrand and Diaconis both point out that
second eigenvalue techniques do not generally lead to the best possible answers in this
case. Fourier methods have more to offer.

The results of this article have a few different aspects: oneaspect is studying the distri-
bution ofX mod k for a fixed lattice random variableX in interesting special cases, such
as the Poisson, binomial, and the negative binomial; in these cases we provide explicit
closed form formulas for the modulo residues in terms of hypergeometric functions.

A second aspect arises by taking a sequenceXn of lattice random variables and study-
ing the asymptotic distribution ofXn modk. In this story, we show that there is an un-
derlying connection of this problem to the theme of Weyl’s equidistribution theorem. If
the distribution ofXn has a convolutional structure,Xn = Y1 + · · · + Yn, where theYi

are i.i.d. and the common distributionF of theYi puts positive mass at both0 and1, then
the distribution ofXn mod k will approach the uniform distribution on the set of residues
{1, 2, · · · , k − 1} whenn → ∞, and this condition cannot be relaxed. But we also show
thatXn need not have a convolution structure for convergence to uniformity forXn modk
to take place; if (for largen) Xn has a finite number of modesmn and a global maximum
Mn, then the distribution ofXn mod k will approach the uniform on{1, 2, · · · , k− 1} as
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long asmnMn → 0.
A third aspect is determining the speed of convergence to uniformity (when it hap-

pens) and understanding the oscillatory nature of this convergence. Here quite a different
technique becomes useful. We show by use of the Euler-MacLaurin summation formula
that if the mass functionfn of Xn is inherited from a very smooth density function on
[0,∞), then convergence to uniformity takes place, and additionally, we can say some-
thing about how fast the convergence occurs.

A fourth aspect is understanding cases of failure and salvaging the failures. Here,
we find other connections. We show by use of well-known theorems in congruence that
prime powers and well-behaved polynomials conform to convergence to uniformity, but
otherwise in general it fails.

Here is a short description of what is in this article:
a) Section 2 starts out with a number of examples that illustrate a diversity of phenom-

ena; for instance, oscillation, lack of oscillation, rapidconvergence, slow convergence,
failures of a general theorem, etc.

b) Section 4 lays out a general story of convergence and moments. The connection to
convolution structures is laid out in Theorem 4.3 together with Corollary 4.3 and Corol-
lary 4.4. Theorem 4.4 and Corollary 4.5 show the multidimensional extensions.

The connection to smooth interpolation and the Euler-MacLaurin formula are laid out
in Theorem 4.5 and Corollary 4.6. Theorem 4.6 and Theorem 4.7 give Fourier bounds on
rapidity of the convergence of moments. Section 4.4 shows where the oscillatory behavior
comes from in certain cases.

c) The important Poisson case is picked up in Section 3. Theorem 3.1 gives the exact
formula for the distribution of the residues of a Poisson variable modulok by using hy-
pergeometric functions. Lemma 3.1 is the Tauberian connection. As is well known, the
Poisson case is suited for Markov chain methods; this is shown for completeness as part
of the proof of Theorem 3.2. Failures and connections to prime powers are described in
Section 3.3.

d) Section 3.4 is the binomial and negative binomial analog of what is in Section 3.
Again, exact formulas are given (Theorem 3.6, Theorem 3.7).Convergence to uniformity
is handled at the same time.

e) Many examples, figures, and tables are given in various sections to motivate and
illustrate the results.
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2 First Illustrative Examples

We begin by a consideration of the usual lattice distributions.

Example 2.1. (The binomial).SupposeX ∼ Binomial(n, 1/2) represents the accumu-
lated successes inn tosses of a fair coin. Then,

P (5 dividesX) = P (X mod 5 = 0) =

⌊n/5⌋
∑

j=0

(

n

5j

)

2−n

=
1

5
+

2

5

[(

ϕ

2

)n

cos
(nπ

5

)

+

(

1

2ϕ

)n

cos
(2nπ

5

)

]

(1)

whereϕ =
(√

5 + 1
)/

2 = 1.618 · · · is the golden ratio and1/ϕ =
(√

5 − 1
)/

2 =

0.618 · · · is the golden ratio conjugate. Thus, for example, ifn is an even multiple of
5, thenP (X mod 5 = 0) has a positive jump, while ifn is an odd multiple of5, then
P (X mod 5 = 0) has a negative jump. The function is oscillatory.

Sinceϕ/2 and1/(2ϕ) are both less than1, we see thatP (X mod 5 = 0) converges to
1/5 asn → ∞. It is interesting to note, however, that the second term in the formula (1)
is oscillatory, although it decays exponentially quickly with n. Figure 1 shows that the
oscillations are significant forn up to about30.

Oscillatory behaviour arises in other directions as well: Figure 2 shows that the prob-
abilitiesP

(

5 | Binomial(n, p)
)

are also oscillatory inp for givenn, the oscillation gradu-
ally dying off asn increases.

Example 2.2. (The Poisson case).SupposeX ∼ Poisson(λ), the Poisson distribution
with meanλ. Then, by a direct calculation

P (3 dividesX) = P (X mod 3 = 0) =
∞
∑

j=0

e−λλ3j

(3j)!
=

1

3
+

2

3
e−3λ/2 cos

(

λ
√

3

2

)

. (2)

5 10 15 20 25 30
n

0.05

0.10

0.15

0.20

0.25

P{5 | Binomial(n, 0.5)}

Figure 1: Oscillatory convergence ofP
(

5 | Binomial(n,0.5)
)

asn increases.
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Figure 2: Oscillations inp for the distribution of binomial residues modulo5.

This obviously converges to1/3 whenλ → ∞. However, again, it is interesting that it
contains a very small oscillatory term2

3
e−3λ/2 cos

(

λ
√

3
2

)

converging to zero.

0.5 1.0 1.5 2.0 2.5 3.0
λ

0.2

0.4

0.6

0.8

1.0

P{Poisson(λ) mod 3 = k}

k = 0

k = 1

k = 2

Figure 3: Oscillatory convergence of the distribution of Poisson residues modulo3.

In fact, there is nothing particularly special aboutP (X mod 3 = 0); similar exact
formulas forP (X mod 3 = 1) andP (X mod 3 = 2) show that these too converge to
1/3, while possessing small oscillatory terms. The exact formulas are:

P (X mod 3 = 1) =
1

3
+

2

3
e−3λ/2 sin

(

3
√

3λ− π

6

)

,

P (X mod 3 = 2) =
1

3
− 2

3
e−3λ/2 sin

(

3
√

3λ+ π

6

)

.

Thus, in this specific illustrative example,P (X mod 3 = j) → 1/3 for eachj = 0, 1, 2,
while P (X mod 3 = j) − 1/3 is anO(e−3λ/2) oscillatory function ofλ. Convergence to
uniformity is very fast in this case.
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There is nothing special about studyingX mod 3; for any positive integerk, the prob-
abilitiesP (X mod k = j) depict analogous convergence as well as oscillatory phenom-
ena. Figure 4 shows the convergence to uniformity ofX mod 5 in the Poisson case asλ
grows. We shall see in Section 4.3 that these phenomena are more general and not just

0 1 2 3 4
j
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0.30

0.35

P{Po(1) mod 5 = j}
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P{Po(2) mod 5 = j}
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j
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P{Po(5) mod 5 = j}

0 1 2 3 4
j

0.05

0.10

0.15

0.20

P{Po(10) mod 5 = j}

Figure 4: Distribution of Poisson residues modulo5.

confined to the Poisson or the binomial case.
In the previous examples the underlying distributions had finite moments of all orders.

The next example is designed to show that existence of moments is not necessary for the
phenomenon of convergence to uniformity for the distribution ofX mod k to prevail.

Example 2.3. (The zeta distribution and connections to Stieltjes constants). Suppose,
givenz > 1, the arithmetic random variableX has the mass function

P (X = n) =
1

ζ(z)nz
(n = 1, 2, 3, . . . ), (3)

whereζ(z) is the Riemann zeta function. Whenz → 1, these distributionsshift to the

right in the sense that the probability of any compact set of integers converges to zero as
z → 1. The distribution has finite expectation only forz > 2.

Now fix anyk ≥ 2 and0 < j ≤ k − 1. Forj = 0, the calculation below needs a very
small obvious modification. Then,

P (X mod k = j) =
1

ζ(z)

∞
∑

n=0

1

(kn+ j)z
=

1

kz ζ(z)

∞
∑

n=0

1

(n+ j
k
)z

=
ζ(z, j

k
)

kz ζ(z)
, (4)
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whereζ(z, q) denotes the Hurwitz zeta function
∑∞

n=0
1

(n+q)z , q > 0, z > 1. Using the
known facts

lim
z→1

(z − 1)ζ(z) = 1 and lim
z→1

[

ζ(z, q) − 1

z − 1

]

= −ψ(q),

whereψ denotes the digamma function, we get, for anyk ≥ 2 andj > 0,

P (X mod k = j) =
1

z−1
− ψ(q) + o(1)

kz 1
z−1

(1 + o(1))
=

1 − (z − 1)ψ(q) + o(z − 1)

kz (1 + o(1))
→ 1

k
,

asz → 1. The limit is 1/k for the casej = 0 as well for trivial reasons as in this case
P (X mod k = 0) = k−z. The caseX mod 5 is illustrated in Figure 5.

2 3 4 5 6
z

0.2

0.4

0.6

0.8

1.0

P{Zeta(z) mod 5 = 1}

1.5 2.0 2.5 3.0 3.5 4.0
z

0.05

0.10

0.15

0.20

P{Zeta(z) mod 5 = j}

j = 0

j = 1

4
3

2

Figure 5: Convergence to the uniform of the distribution of zeta residues modulo5 asz ↓ 1.

We can obtain an asymptotic expansion forP (X mod k = j) via classical analysis.
Begin with the Laurent series expansions of the Riemann and the Hurwitz zeta functions:

ζ(z) =
1

z − 1
+

∞
∑

n=0

(−1)nγn

n!
(z − 1)n, (5)

ζ(z, q) =
1

z − 1
+

∞
∑

n=0

(−1)nγn(q)

n!
(z − 1)n. (6)

The termsγn, γn(q) in these series expansions are the celebratedStieltjes constants. For
example,γ0 = C is Euler’s constant, andγ0(q) = −ψ(q) where, once againψ is the
digamma function. The first few Stieltjes constantsγn are shown to four decimal places
in Table 1, as also values ofγn(j/5) for the casek = 5 [for more extensive tables see
Finch (2003) and Musser (2011), for example].

Combining (4), (5), and (6), and writingk−z = e−z log k = 1
k
e−(z−1) log k, a little

algebra gives us a two term asymptotic expansion

P (X mod k = j) = k−1
[

1 +
{

γ0

(

j
k

)

− γ0 − log(k)
}

(z − 1) +
{

1
2
log(k)2

+
{

γ0 − γ0

(

j
k

)}(

log(k) + γ0

)

+ γ1 − γ1

(

j
k

)

}

(z − 1)2 +O
(

(z − 1)3
)

]

. (7)

For the casek = 5, for instance, the coefficients needed to carry out (7) may beread out
from Table 1.
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n 0 1 2 3 4

γn 0.5772 −0.0728 −0.0097 0.0021 0.0023

j γ0(j/5) γ1(j/5) γ2(j/5) γ3(j/5) γ4(j/5)

1 5.2890 −8.0302 12.9407 −20.8487 33.5483

2 2.5614 −2.2528 2.1017 −1.9268 1.7603

3 1.5406 −0.8308 0.4456 −0.2210 0.1120

4 0.9650 −0.2982 0.0691 −0.0094 0.0040

Table 1: Some Stieltjes constants.

Example 2.4. (An example with exceptional structure: the geometric distribution). Let
Y have the exponential distribution with meanλ, and letX be its integer part. ThenX
has the waiting time mass function

P (X = n) = w(n; 1 − e−1/λ) = e−n/λ − e−(n+1)/λ = e−n/λ(1 − e−1/λ) (n ≥ 0),

that is to say,X ∼ Geometric(1 − e−1/λ) has the geometric distribution with parameter
p = 1 − e−1/λ. By direct summing we see now that

P (X mod k = j) =
∞
∑

n=0

w(kn+ j; 1 − e−1/λ) =
(e1/λ − 1) e(k−j−1)/λ

ek/λ − 1

=
e(k−j−1)/λ

1 + e1/λ + e2/λ + · · · + e(k−1)/λ
. (8)

It is apparent from (8) that, for any givenk andλ, P (X mod k = j) is monotone de-
creasing inj [see Figure 6]. This is not true, for example, in the Poisson case.

0 1 2 3 4 5 6 7 8 9
j

0.02

0.04

0.06

0.08

0.10

0.12

P{Geometric(1-e - 1/ 15) mod 10 = j}

Figure 6: Monotone behaviour withj for the distribution of geometric residues modulo10.
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Certain monotonicities inλ are also visible; for instance, for a givenk, a simple differ-
entiation shows that, asλ increases,P (X mod k = 0) is decreasing whileP (X mod k =

k−1) is increasing; non-monotone behaviour is possible for intermediate values ofj [see
Figure 7].

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

λ

P{Geometric (1 - e- 1/λ) mod 5 = j }

j = 0

1

2
3

4

Figure 7: Convergence to the uniform of the distribution of geometric residues modulo5.

We can investigate the asymptotics inλ by a Taylor series expansion of the exponen-
tials in (8). By a simple calculation, one gets

P (X mod k = j) =
1

k
+
k − 2j − 1

2k λ
+
k2 − 3k + 2 + 6j(j + 1 − k)

12k λ2
+O(λ−3).

Hence, except whenk is odd andj = k−1
2

, convergence to uniformity is at the slow rate
of 1

λ
. This is also in contrast to the Poisson case. In Figure 6 we also see illustrated the

significant practical deviation from uniformity for the distribution of X mod 10 at the
large value ofλ = 15.

Example 2.5. (A case of failure).There are fairly natural integer-valued random variables
for which the phenomenon of convergence to uniformity of thedistribution ofX mod k

fails. On introspection, this is not surprising. But as a simple concrete example, takeX to
be the square of a Poisson random variableY with meanλ. SinceX is even if, and only
if, Y is even, it follows that

P (X mod 2 = 0) = e−λ

∞
∑

j=0

λ2j

(2j)!
= e−λ

(

eλ − e−λ

2

)

=
1

2
−1

2
e−2λ → 1

2
(λ→ ∞).

Likewise,P (X mod 2 = 1) of course also goes to1/2 asymptotically. However, con-
vergence to uniformity fails for the distribution ofX mod 3. Since3n + 2 can never be
a perfect square for an integern, we do not have convergence to uniformity in this case.
Indeed, in this case,

P (X mod 3 = 0) =
1

3
+

2

3
e−3λ/2 cos

λ
√

3

2
→ 1

3
,
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P (X mod 3 = 1) =
2

3
− 2

3
e−3λ/2 cos

λ
√

3

2
→ 2

3
,

P (X mod 3 = 2) = 0.

Basically,X mod k will converge in law toU2
k mod k whereUk denotes a variable uni-

form on {0, 1, . . . , k − 1}; however, see Theorem 4.5 for a crisper description. Table 2
lists the limiting distributions ofX mod k for some specific values ofk.

j

k 0 1 2 3 4 5 6 7 8 9

2 1
2

1
2

3 1
3

2
3

0

4 1
2

1
2

0 0

5 1
5

2
5

0 0 2
5

10 1
10

1
5

0 0 1
5

1
10

1
5

0 0 1
5

Table 2: Limiting distributions ofY 2 mod k whenY is Poisson.

3 Exact Formulas for Poisson and Other Standard Cases

We treat the important Poisson, binomial, and negative binomial cases in detail in this
section. It turns out that in each of these important specialcases, we can write closed form
formulas forP (X mod k = j) for every fixed parameter value of the distribution, and for
every fixedk andj. These exact formulas are in terms of hypergeometric functions. These
exact formulations lend themselves to a variety of direct proofs of asymptotic uniformity
and we explore some of the ramifications. These proofs bring out some special features
and special connections that are not present in general. We start with the Poisson case.

3.1 Exact and Asymptotic Distributions of Poisson mod k

Let X ∼ Poisson(λ). We prove, using a few different methods, that the distribution of
X mod k converges weakly to the discrete uniform distribution on the set{0, 1, · · · , k −
1}. Each proof has its own virtue, each making a connection to very different fields of
mathematics: the first proof exhibits a Tauberian link via anexact formula for the prob-
abilities; the second proof exposes a Fourier connection via an identity for characteristic
functions; and the third proof exploits a Markov chain embedding. The explicit closed
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form formulas that we provide for the distribution ofX modk are of independent inter-
est.

Theorem 3.1. Let X ∼ Poisson(λ) and, in the usual notation, let0Fk−1 denote the

generalized hypergeometric functionpFq with parametersp = 0 and q = k − 1. Then,

for each pair of integersj andk satisfyingk ≥ 2 and0 ≤ j ≤ k − 1, one has the exact

formula

pj(λ) := P (X mod k = j)

=
e−λλj

j!
0Fk−1

(

j + 1

k
,
j + 2

k
, . . . ,

k − 1

k
,
k + 1

k
, . . . ,

j + k

k
;
λk

kk

)

. (9)

Proof. For the given choices ofj, k, andλ, a little algebraic massaging shows that

pj(λ) = e−λ

∞
∑

r=0

λkr+j

(kr + j)!
=
e−λλj

j!

[

1 +
k

j + 1
· k

j + 2
· · · k

j + k
· λ

k

kk

+ 2
k

j + 1
· k

j + k + 1
· k

j + 2
· k

j + k + 2
· · · k

j + k
· k

j + 2k
· (λ

k
)2k

2!
+ · · ·

]

and we may simply identify the expression in square bracketson the right with the hyper-
geometric function0Fk−1 appearing in (9).

For special values ofk, the exact formula (9) simplifies; here is a record of it.

Corollary 3.1. LetX ∼ Poisson(λ). Then:

P (X mod 2 = j) =







e−λ coshλ if j = 0,

e−λ sinhλ if j = 1;

P (X mod 3 = j) =















1
3

+ 2
3
e−3λ/2 cos

(

λ
√

3
2

)

if j = 0,
1
3

+ 2
3
e−3λ/2 sin

(

λ
√

3
2

− π
6

)

if j = 1,
1
3
− 2

3
e−3λ/2 sin

(

λ
√

3
2

+ π
6

)

if j = 2;

P (X mod 4 = j) =



























e−λ cos λ+cosh λ
2

if j = 0,

e−λ sin λ+sinh λ
2

if j = 1,

e−λ cosh λ−cos λ
2

if j = 2,

e−λ sinh λ−sin λ
2

if j = 3.

Theorem 3.2. For any k and 0 ≤ j ≤ k − 1, we haveP (X mod k = j) → 1/k as

λ→ ∞.
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Proof 1: First, the Tauberian approach. For this we show thatpj(λ) converges in mean
under a suitably chosen sequence of weight functionsgµ(λ), i.e.,

∫∞
0
pj(λ)gµ(λ) dλ →

1/k whenµ → ∞. To demonstrate that convergence in mean in this setting will indeed
imply that pj(λ) → 1/k whenλ → ∞, we appeal to the following Tauberian theorem
[Hardy (1956, Theorem 221, p. 286)]; we state it as a lemma.

Lemma 3.1. Supposef is bounded and slowly oscillating at∞, and that the Fourier
transform ofg has no real zeroes. Suppose

∫

g(θ − t)f(t) dt → l asθ → ∞. Then
f(x) → l asx→ ∞.

In order to use Lemma 3.1, we letg(t) = e−te−e−t

, f(t) = pj(e
t) wherepj(·) is the

function in (9), andθ = log µ with µ > 0. Then, by a change of variable,

∫ ∞

−∞
g(θ − t)f(t) dt =

∫ ∞

−∞
et−θe−et−θ

pj(e
t) dt =

∫ ∞

0

1

µ
e−

λ
µpj(λ) dλ

=
1

µ j!

∫ ∞

0

λje−λ(µ+1)/µ
0Fk−1

(

j + 1

k
,
j + 2

k
, . . . ,

k − 1

k
,
k + 1

k
, . . . ,

j + k

k
;
λk

kk

)

dλ

The integral on the right, curiously, simplifies to an exact form and, after simplification,
we obtain the formula

∫ ∞

−∞
g(θ − t)f(t) dt =

µj(µ+ 1)k−j−1

(µ+ 1)k − µk
. (10)

Note that for the right-hand side of (10) to tend to1/k asµ → ∞ it is necessary and
sufficient thatθ = log µ→ ∞.

Now observe thatg(t) is the density of the standard Gumbel distribution which is in-
finitely divisible. Hence, its Fourier transformcannot have any real zeroes. With this, the
only thing left to verify is that the functionf(t) is slowly oscillating, and then Lemma 3.1
applies and we have our desired resultf(x) → 1/k asx→ ∞, which meanspj(λ) → 1/k

asλ→ ∞.
Now, a sufficient condition forf to be slowly oscillating is thatf ′(t) = O(1) [see

Hardy (1956, p. 287)]. But, sincef(t) = pj(e
t), we havef ′(t) = et p′j(e

t), and so,
we need to show thatλp′j(λ) = O(1). Now, directly from the definition ofpj(λ), by
term-by-term differentiation of the absolutely convergent power series, we obtain

p′j(λ) = −e−λλj

∞
∑

r=0

λkr

(kr)!
+ je−λλj−1

∞
∑

r=0

λkr

(kr)!
+ e−λλj

∞
∑

r=1

krλkr−1

(kr)!

= −pj(λ) +
j

λ
pj(λ) + e−λλj

∞
∑

r=1

(kr + j − j)λkr−1

(kr)!

11



= −pj(λ) +
j

λ
pj(λ) + e−λλj−1

[ ∞
∑

r=0

λkr

(kr + j − 1)!
− 1

(j − 1)!

]

− je−λλj−1

[ ∞
∑

r=0

λkr

(kr + j)!
− 1

j!

]

= −pj(λ) +
j

λ
pj(λ) + pj−1(λ) − e−λλj−1

(j − 1)!
− j

λ
pj(λ) +

e−λλj−1

(j − 1)!
.

After cancellations on the right-hand side, we hence obtainthe rather remarkable identity

p′j(λ) = pj−1(λ) − pj(λ) (11)

valid formally for 1 ≤ j ≤ k − 1. We may extend the validity of (11) toj = 0 as well
by interpreting subscripts modulok so that0 − 1 ≡ k − 1 (mod k): thus, forj = 0, the
corresponding identity is

p′0(λ) = pk−1(λ) − p0(λ). (12)

We will see shortly that we may interpret (11,12) from a Markov process standpoint.
From (11,12), for any givenj, k, one gets thatp′j(λ) = O(e−ǫλ) for some suitableǫ =

ǫj,k > 0. Hence,λp′j(λ) = o(1) asλ → ∞, which means that it is alsoO(1). Thus,
the functionf(t) = et pj(e

t) is slowly oscillating at∞. This completesProof 1of Theo-
rem 3.2.

Proof 2: This is an efficient Fourier analytic proof of the result which has the advantage of
applying more generally but which, in a sense, may lack a little in mathematical intuition.
This approach should be compared to the material on moments in Section 4.5.

Let ψX(t) = E[eitX ] be the characteristic function ofX. By inverting the transform,
we obtain the Fourier identity

pj(λ) =
1

k

k−1
∑

r=0

e−i2πjr/kψX

(

2πr

k

)

=
1

k
+

1

k

k−1
∑

r=1

e−i2πjr/kψX

(

2πr

k

)

(13)

which applies in general. In our Poisson case,ψX(t) = eλ(eit−1), and so the identity (13)
specializes to

pj(λ) =
1

k
+

1

k

k−1
∑

r=1

e−i2πjr/k

[

eλ{cos(2πr/k)−1}
{

cos

(

λ sin
2πr

k

)

+ i sin

(

λ sin
2πr

k

)}]

.

(14)
Now, for eachr between1 andk − 1, we havecos(2πr)/k < 1, and hence each of the
terms in the sum on the right in (14) tends to0 asλ → ∞. It follows thatP (X mod k =

j) → 1/k asλ→ ∞.

Proof 3: This is also a short proof using a Markov chain convergence argument. Fix
k ≥ 2. Writing t for time, letN(t), t ≥ 0, be a Poisson process with a constant rate equal

12



to 1, and letX̃(t) = N(t) mod k for t ≥ 0. ThenX̃(t) is a continuous time Markov chain
on the state space{0, 1, · · · , k − 1}. Using the same notation as in Ross (1995, p. 251),
the embedded discrete time chain has the transition probabilities

Pi,j =







1 if i = 0, 1, . . . , k − 2 andj = i+ 1,

1 if i = k − 1 andj = 0.

Furthermore, the departure ratesνi corresponding to thek different states are each equal
to 1. Hence a unique solution of the system of equationsπj =

∑

i πiPi,j satisfying the
constraint

∑

i πi = 1 is πj ≡ 1/k. Now, the limiting probabilities are characterized by

pj := lim
t→∞

Pi,j(t) =
πj/νj
∑

i πi/νi

≡ 1

k
,

which is the desired result.

We remark that the identities (11,12) that we derived above from first principles hap-
pen to be exactly the Kolmogorov forward equations for the processX̃(t) [see Ross (1995,
pp. 246–250), or Feller (1971, p. 328)].

3.2 Nonuniformity when k → ∞ with λ

If X ∼ Poisson(λ), then the distribution ofX mod k converges weakly to the discrete
uniform distribution on the set{0, 1, . . . , k−1} for every fixedk whenλ→ ∞. However,
this is not necessarily true, whenk grows withλ and also goes to∞. Depending on
the rate of growth ofk asλ → ∞, various types of limiting distributions are possible
with an appropriate centering and scaling ofX mod k. For example, ifk = λ, then the
distribution ofX mod k is approximated by a mixture of two half-normal distributions,
one centered atk and the other centered at zero. On the other hand, ifk ≫ λ, then
X mod k will have an approximately normal distribution with a suitable centeringµ(k)

and scalingσ(k). Figure 8 contains representative plots illustrating the various behaviours
that arise.

3.3 Poisson Powers and Connections to Number Theory

We showed by an example (Example 2.5) that convergence to uniformity on the residue
class{0, 1, . . . , k − 1} fails for the square of a Poisson. In this section we provide an
explicit general result for Poisson powers whenk is a prime; ifk is not a prime, the result
is not explicit. We begin by introducing some notation.

Consider the equationxr = j mod p. Herej = 1, 2, . . . , p− 1 and we assumep to be
a prime. Letd be the greatest common divisor ofr andp − 1. Let g be any generator of

13
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Figure 8: The change in the form of the limiting distribution in the case of the Poisson distribution

of mean75 whenk runs through the values20, 45, 75, and100.

the multiplicative quotient groupZ/pZ. Let n be the degree ofj; thus,gn = j mod p.
Define the function

N(j) =















1 if n = 0,

d if n 6= 0 andn = 0 mod d,

0 if n 6= 0 mod d.

With this for preparation, here is our general result.

Theorem 3.3. SupposeY ∼ Poisson(λ) and letX = Y r for r ≥ 2. Let k ≥ 2 and,

modifying our earlier notation, letUk denote a random variable distributed uniformly on

{0, 1, . . . , k − 1}. Then:

(a) For generalk,X mod k
D⇒ U r

k mod k asλ→ ∞.

(b) If k = p is prime thenP (X mod p = j) → N(j)/p asλ → ∞ for each integer

0 ≤ j ≤ p− 1.
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The explicit formulation in part (b) follows from equation (4.86), p. 100, in the proof
of Theorem 4.4.8 in Miller and Takloo-Bighash (2006).

We illustrate Theorem 3.3 with an example (also refer to Example 2.5).

Example 3.1. Let r = 5 andk = p = 11. Thend = 5. A generator ofZ/11Z is
g = 2. Table 3 lists the degreesn corresponding to eachj for the congruence2n =

j mod 11. By inspection of the elements of the table we see thatn 6= 0 mod 5 for j ∈

j 1 2 3 4 5 6 7 8 9 10

n 10 1 8 2 4 9 7 3 6 5

Table 3: 2n = j mod 11.

{2, 3, 4, 5, 6, 7, 8, 9}, whilen 6= 0 andn = 0 mod 5 for j ∈ {1, 10}. Thus, asλ→ ∞,

P (X = j mod 11) →















1/11 if j = 0,

5/11 if j ∈ {1, 10},

0 if j ∈ {2, 3, 4, 5, 6, 7, 8, 9}.

We see hence that the limit of the fifth power is drastically nonuniform.

There is one interesting special case where the power would still be asymptotically
uniform on the residue class{0, 1, . . . , k − 1}. We present the result for the Poisson case
but it generalizes to suitable non-Poisson cases as well.

Theorem 3.4. SupposeY ∼ Poisson(λ) and letX = Y p wherep is a prime. Let0 ≤ j ≤
p− 1. ThenP (X mod p = j) → 1/p asλ→ ∞.

Proof. By Fermat’s little theorem, ifp is a prime, then for any integern we havenp ≡ n

(mod p), whenceP (X mod p = j) = P (Y mod p = j) → 1/p by Theorem 3.2.

Theorem 3.4 generalizes to certain polynomials of multiplePoisson variables, a spe-
cial case being convolutions of Poisson powers. Theorem 3.5below will generalize to
many non-Poisson cases.

Theorem 3.5. Let Y1, . . . , Ym be a sequence of independent random variables where

Yi ∼ Poisson(λi), and supposeXi = Y p
i wherep is a prime. Letf(y1, . . . , ym) be a

polynomial in(y1, . . . , ym) with integer coefficients. Suppose that for0 ≤ j ≤ p− 1, we

have

P
(

f(Y1, . . . , Ym) mod p = j
)

→ 1/p (15)

asymptotically asmini λi → ∞. Then

P
(

f(X1, . . . , Xm) mod p = j
)

→ 1/p

for eachj = 0, 1, . . . ,p− 1.
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Corollary 3.2. With notation as in Theorem 3.5, suppose only that
∑m

i=1 λi → ∞. Then

P

( m
∑

i=1

Xi mod p = j

)

→ 1/p

for eachj = 0, 1, . . . ,p− 1.

Proof. We use the following strong generalization of Fermat’s little theorem [see Ṕolya
and Szego (1998, Vol. II, p. 148), or LeVeque (1996, p. 57)]: for any primep and any
polynomialf(y1, . . . , ym) with integer coefficients,[f(y1, · · · , ym)]p ≡ f(yp

1, · · · , yp
m)

(mod p). The proof follows easily by using the hypothesis (15) of thetheorem.

Notice that in the specialization of the theorem to convolutions, not all of theλi need
go to∞; it is enough if one of them does.

3.4 The Binomial and the Negative Binomial Cases

The binomial and the negative binomial cases exhibit one significant point of difference
with the Poisson case. In the Binomial(n, p) case convergence to uniformity occurs in
two separate asymptotic paradigms: 1)p is fixed andn → ∞, and 2)p = p(n) → 0 and
np → ∞. The second paradigm resembles the Poisson case. Likewise,in the NB(r, p)

case convergence to uniformity occurs in the two asymptoticparadigms, 1)p is fixed and
r → ∞, and 2)r is fixed andp → 0 (a necessary and sufficient condition is provided
in (17) below). A special case of the latter asymptotic paradigm is seen in the case of the
geometric distribution withp→ 0.

On the principle that it is always good to possess an exact formula, in the case of the
negative binomial we derive an explicit expression forP (X mod k = j) for each fixedr,
p, j, k. We have not, however, been successful in obtaining a similar clean, exact formula
in the case of the binomial except for special values ofk.

Theorem 3.6. LetX ∼ NB(r, p) and letq = 1− p. Letk ≥ 2 be any given integer. Then,

for 0 ≤ j ≤ k − 1,

P (X mod k = j) =
(

r+j−1
r−1

)

pr(1 − p)j

× kFk−1

(

r+j
k
, r+j+1

k
, . . . , r+j+k−1

k
; j+1

k
, j+2

k
, . . . , k−1

k
, k+1

k
, . . . , k+j

k
; (1 − p)k

)

(16)

where the usual accommodations have to be made for the end cases j = 0 andj = k − 1

where many of the terms in the argument of the hypergeometric distribution vanish.

We omit the proof as the derivation is similar to that of (9). For specificr andk,
formula (16) simplifies. Here are a few specific cases as examples.
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Corollary 3.3. LetXr ∼ NB(r, p) and letq = 1 − p. Then:

a) P (X1 mod k = j) =
pqj

1 − qk
(0 ≤ j ≤ k − 1).

b) P (X2 mod k = j) =
p2qj

(

j + 1 + qk(k − j − 1)
)

(1 − qk)2
(0 ≤ j ≤ k − 1).

c) P (X3 mod 2 = j) =







(1+3q2)
(1+q)3

if j = 0,
q(3+q2)
(1+q)3

if j = 1.

d) P (X3 mod 3 = j) =



















(1+7q3+q6)
(1+q+q2)3

if j = 0,
3q(1+2q3)
(1+q+q2)3

if j = 1,
3q2(2+q3)
(1+q+q2)3

if j = 2.

e)P (X3 mod 4 = j) =































(1+12q4+3q8)
(1+q+q2+q3)3

if j = 0,
q(3+12q4+q8)
(1+q+q2+q3)3

if j = 1,
2q2(3+5q4)

(1+q+q2+q3)3
if j = 2,

2q3(5+3q4)
(1+q+q2+q3)3

if j = 3.

We now present the corresponding convergence theorem.

Theorem 3.7. LetX ∼ NB(r, p). ThenP (X mod k = j) → 1/k for eachk ≥ 2 and

0 ≤ j ≤ k − 1 if, and only if, for each real numbera ∈ [−1, 1),
(

p
√

(1 − qa)2 + q2(1 − a2)

)r

→ 0. (17)

Proof. The approach uses Fourier methods. Fix0 < θ < 2π, and denotea = cos θ. Bear
in mind thata < 1. SupposeX ∼ NB(r, p) and denote its characteristic function by
ψX(t). With q = 1 − p as before, note that

ψX(t) =

(

p

1 − qeit

)r

.

By the Fourier identity (13),P (X mod k = j) → 1/k for each fixedk and each0 ≤ j <

k if, and only if,
∣

∣

∣

∣

(

p

1 − qeit

)r∣
∣

∣

∣

→ 0.

But this condition may be rewritten in the form
(

p
√

1 − 2q cos t+ q2

)r

→ 0

which, in turn, is equivalent to the statement (17) to be shown.
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In particular, (17) holds for each fixedr ≥ 1 if p→ 0, or for each fixedp if r → ∞.

Theorem 3.8. LetX ∼ Binomial(n, p) and letq = 1−p. ThenP (X mod k = j) → 1/k

for eachk ≥ 2 and each0 ≤ j ≤ k − 1 if, and only if, for each real numbera ∈ [−1, 1),

(

(pa+ q)2 + p2(1 − a2)
)n → 0. (18)

The proof of (18) follows the same lines as that of (17) by exploiting the fact that the
characteristic function of a Binomial(n, p) distribution is given byψX(t) = (1−p+peit)n.
We omit the details.

4 General Theory and General Convergence Theorems

Having treated the important standard lattice distributions in Section 3, we now move on
to generalities. The purpose of this section is three-fold:(a) Obtain a general expression
for P (X mod k = j) for a more or less general lattice random variableX, by using the
classic tool of the Euler-Maclaurin summation formula. (b)For a sequence of lattice ran-
dom variablesXn having a convolution structure, draw an analogy to the famous Weyl
equidistribution theorem, and exploit this analogy to write a nearly necessary and suffi-
cient condition for convergence ofXn mod k to uniformity. (c) Again, for a sequence of
lattice random variablesXn, give a widely applicable sufficient condition for convergence
to uniformity by using the modal properties of the mass functions ofXn.

Because of the technical nature of the proofs of all these general theorems, we have
given these proofs in a separate appendix.

We start with a general theorem on the convergence of the distribution of a sequence of
integer-valued random variablesXn modk to the uniform distribution on{0, 1, . . . , k−1}
and provide an elementary proof in the spirit of Poincaré’s method of arbitrary functions.
The conditions imposed are close to being necessary and sufficient and, if convergence
is all that is desired, this theorem will cover all the standard cases. For instance, it will
already explain the distributional convergence of variables reduced modulok in the ex-
amples of the previous section.

Our basic theorem provides a bound on the total variation distance between the dis-
tribution ofX mod k and the uniform distribution on{0, 1, . . . , k − 1} for a given dis-
tribution for X. While the total variation bound suffices to deduce conditions for the
convergence of moduli residues to the uniform, it is a ratherblunt instrument and leaves
open the question of how such distributions may be systematically constructed. Nor does
the total variation bound provide sufficiently precise information about finer questions
such as the rate of convergence or the origins of oscillatoryphenomena. For these we
have to dig deeper.
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The first of these deeper questions may be partially answeredby a variation on the
theme of Weyl’s equidistribution theorem by a consideration of convolutional structures
arising out of random walks on the additive groupZk. We shall see that such processes
characterize a large family of distributions for which the moduli residues converge to the
uniform.

We follow this limit theorem by a characterization of a rather different flavor by con-
necting the distribution ofX mod k to absolutely continuous distributions via the Euler-
Maclaurin summation formula. When a tractable smooth interpolation of a discrete dis-
tribution is available, a finer analysis now allows one to notonly inherit distributional
convergence for the modulo residues from a class of absolutely continuous distributions,
but, by a consideration of the residual terms in the Euler-Maclaurin sum, explicate the
origins of the oscillation that was evidenced in the illustrative examples of Section 2.

4.1 First General Theorem and a Bound on the Total Variation Dis-
tance

Our basic result is a variation on the theme of H. Poincaré’s classical analysis of roulette
in 1896 [see Poincaré (1912, pp. 122–130)]. The body of work emerging from Poincaré’s
analysis, memorably called ”the method of arbitrary functions” by Hopf, builds upon
the fundamental result that ifX is absolutely continuous andt a real number then the
fractional part oftX converges in distribution to the uniform distribution on the unit
interval ast → ∞. [For a rich tapestry of applications, see Engel (1992).] The following
theorem is a discrete analogue. It asserts, roughly speaking, that if the distribution of a
non-negative, integer-valued random variableX is “honest” in the sense that it is suitably
well spread out thenX mod k is approximately uniformly distributed for anyk. The
proof we give here exploits partitioning in the spirit of Poincaŕe’s approach [see Venkatesh
(2013, pp. 288–290), for instance].

A little notation streamlines the presentation. For anyk ≥ 2, letU (k) denote a random
variable distributed uniformly on{0, 1, . . . , k − 1}, and, for any non-negative integer-
valued random variableX, write X(k) = X mod k. If U andV are random variables,
write

dTV

(

L(U),L(V )
)

= sup
A

∣

∣P (U ∈ A) − P (V ∈ A)
∣

∣

for the total variation distance between the laws ofU andV . The supremum is over all
Borel sets;L(·) stands for distribution or law of the random variable in the argument.

We recall that a mode of an arithmetic random variable is any value at which its mass
function achieves a (local) maximum. We identify anymaximalcollection of consecu-
tive integers all achieving the same (locally) maximum value as an equivalence class of
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modes and select as representative any member of the class. By definition, any two equiv-
alence classes of modes must either coincide or be disjoint.Distinct modes correspond to
representatives in different equivalence classes.

Theorem 4.1. LetX be an integer-valued random variable taking values in0, 1, 2, . . . .

Suppose the mass functionf(i) = P (X = i) of X hasm distinct modes and write

M = maxi f(i). Then1
k
dTV

(

L(X(k)),L(U (k))
)

≤ 2mM for everyk ≥ 2.

Example 2.5 illustrates what can go wrong if the number of modes is not finite. On
the other hand, if the number of modes is finite then with an explicit bound in hand it is
easy to write down a general convergence theorem.

Corollary 4.1 (CONVERGENCE CRITERION). Let {Xn} be a sequence of non-negative

integer-valued random variables. Suppose the mass function fn(i) = P (Xn = i) has

mn distinct modes and attains a maximum valueMn = maxi fn(i). If mnMn → 0 then

dTV

(

L(X
(k)
n ),L(U (k))

)

→ 0 for eachk ≥ 2.

The usual setting where the convergence theorem comes into play is when the se-
quence{mn} is bounded, the unimodal case being the most important in practice. In this
case the convergence criterion takes a very simple form:if {mn} is bounded andMn → 0

thendTV

(

L(X
(k)
n ),L(U (k))

)

→ 0 for eachk ≥ 2. Our convergence theorem yields a
quick and direct verification of the cases of convergence in the examples of the previous
section without the necessity of a laborious case-by-case analysis (though finer behavior
will have to await a more careful analysis).

Example 4.1. (The binomial, revisited.)The Binomial(n, p) distribution bn(k; p) =
(

n
k

)

pk(1 − p)n−k is unimodal and attains its maximum valueMn at the point⌈np⌉. An
easy application of Stirling’s formula shows that

Mn = bn
(

⌈np⌉; p) ∼
1

√

2πp(1 − p)n
→ 0 (n→ ∞)

for every fixedp in the open unit interval0 < p < 1. Thus, ifXn ∼ Binomial(n, p) and
0 < p < 1, thendTV

(

L(X
(k)
n ),L(U (k))

)

→ 0 asn → ∞. Notice that the conclusion that
Mn → 0 is also obtainable from the local limit theorem because of the convolution struc-
ture of the binomial distribution. We will return to a more careful study of the binomial
in Section 3.4.

Example 4.2. (The Poisson distribution, revisited.)The Poisson(n) distributionp(k;n) =

e−nkn/k! (n ≥ 0) is also unimodal and attains its maximum valueMn at the pointk = n.
It follows that

Mn = p(n;n) ∼
1√
2πn

→ 0 (n→ ∞),
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and so, ifXn ∼ Poisson(n), thendTV

(

L(X
(k)
n ),L(U (k))

)

→ 0. Once again, we may also
conclude thatMn → 0 from thelocal limit theorem as the Poisson also has a convolution
structure. We will study the Poisson case in detail in Section 3.

Example 4.3. (The zeta distribution, revisited).The zeta distribution

f(n; z) =
1

ζ(z)nz
(n ≥ 1)

of Example 2.3 is unimodal and achieves its maximum value of1/ζ(z) at n = 1. As
ζ(z) → ∞ asz → 1, it follows that, ifXz ∼ f(·; z), thenX(k)

z converges in distribution
to the uniform asz ↓ 1.

Example 4.4. (The geometric distribution, revisited.)SupposeXλ is concentrated on the
non-negative integers with the geometric distribution with parameter1 − e−1/λ. Its mass
functionw(j; 1−e−1/λ) = e−j/λ(1−e−1/λ) is unimodal and achieves its maximum value
of w(0; 1 − e−1/λ) = 1 − e−1/λ at the origin. It follows thatdTV

(

L(X
(k)
λ ),L(U (k))

)

→ 0

asλ→ ∞.

Example 4.5. (The negative binomial distribution.)Fix any positive integern and0 <

p < 1. Write q = 1 − p. The negative binomial distribution

wn(j; p) =

(−n
j

)

(−q)jpn (j ≥ 0)

is unimodal and achieves its maximum valueMn,p at the pointj = ⌈(n−1)q/p⌉. An easy
application of Stirling’s formula (or the local limit theorem) shows that

Mn,p = max
j
wn(j; p) = wn

(

⌈(n− 1)q/p⌉; p
)

∼
p√

2πqn
(n→ ∞).

Thus, ifXn,p ∼ wn(·; p), thendTV

(

L(X
(k)
n,p),L(U (k))

)

→ 0 asn→ ∞.
Another asymptotic convergence is obtained by allowingp ↓ 0. The asymptotic esti-

mates are unchanged and sodTV

(

L(X
(k)
n,p),L(U (k))

)

→ 0 also whenp→ 0.

The simplest examples of multimode distributions arise outof mixtures of unimodal
(or other multimodal) distributions. The Poisson case provides a typical illustrative ex-
ample.

Example 4.6. Poisson mixtures.In the notation of Example 4.2, write

p(i;λ) = e−λλ
i

i!
(i ≥ 0)

for the Poisson distribution with meanλ. Then the mixture distribution

f(i) =
m
∑

j=1

αjp(i;λj) (i ≥ 0)
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Figure 9: The Poisson mixture distributionf(i) = 0.2p(i; 5) + 0.3p(i; 15) + 0.2p(i; 30) +

0.3p(i; 50) has four modes.

(where theαj are positive and sum to1) has up tom modes as illusrated in Figure 9. If
X is a random variable distributed according tof(·) then, by Theorem 4.1,

dTV

(

L(X(k)),L(U (k))
)

≤ 2kmM

where we may bound

M = max
i
f(i) ≤

m
∑

j=1

αj max
i
p(i;λj) ≤

C√
2π

m
∑

j=1

αj
√

λj

≤ C√
2π

· 1

minj

√

λj

.

The quantityC on the right represents an absolute positive constant whichwe may take
to be e1/13. The explicit bound on the right yields a simple convergencecriterion in
terms of the Poisson parameters. Suppose{mn, n ≥ 1} is a positive integer sequence
and{λjn, 1 ≤ j ≤ mn, n ≥ 1} is a doubly indexed sequence of positive real values
such thatmn

/(

min1≤j≤mn

√

λj,n

)

→ 0. Let {Xn, n ≥ 1} be a sequence of random
variables where, for eachn, Xn has a Poisson mixture distribution of the formfn(·) =
∑mn

j=1 αj,np(·;λj) (whereαj,n ≥ 0 and
∑

j≤mn
αj,n = 1). ThendTV

(

L(X
(k)
n ),L(U (k))

)

→
0 for eachk ≥ 2.

The convergence theorem extends effortlessly to settings where the modulus is ran-
dom. Some notation first: to each distributionα = (αk, k ≥ 1) with support in the
positive integers associate the distributionh(j;α) =

∑

k≥j+1 αk/k with support in the
non-negative integersj ≥ 0.

Theorem 4.2. SupposeK is a lattice variable whose distributionα = (αk, k ≥ 1) has

support in the positive integers. IfX is as in Theorem 4.1 andK is independent ofX then

supj

∣

∣P
(

X(K) = j
)

− h(j;α)
∣

∣ ≤ 4mM .
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Corollary 4.2. If the sequence{Xn} is as in Corollary 4.1 andK is independent of{Xn}
thensupj

∣

∣P
(

X
(K)
n = j

)

− h(j;α)
∣

∣→ 0 asn→ ∞ providedmnMn → 0.

4.2 A Variation on Weyl’s Equidistribution Theorem and Automatic
Constructions

The convergence theorem of the previous section identifies structural features (in terms of
modes) of arithmetic distributions for which there is distributional convergence for moduli
residues. If a criticism were to be levied it could be that thediscovery of distributions
satisfying the convergence theorem has been carried out on atrial and error basis and that
the examples that we have encountered so far are mostly the standard lattice distributions.
It would be useful to bolster our understanding bysystematicconstructions. Fortunately, a
large (but, as we shall see, not exhaustive) family of distributions is available to us through
the classical theory. First, we need some notation.

As a preliminary, we recall the cyclic convolution operatoron the additive groupZk

with group operation addition modulok. If F andG are distributions with support inZk,
the cyclic convolution ofF andG, denotedF ⋆ G, is the distribution with mass function

F ⋆ G{t} =
∑

s∈Zk

G{t− s}F{s} (t ∈ Zk)

where sums and differences of elements in the additive groupZk are to be interpreted
modulo k. The operation is commutative and associative and so there is no harm in
writing F1 ⋆ F2 ⋆ · · · ⋆ Fn for a repeated convolution.

SupposeX is a random variable whose distributionF has support contained in the set
of non-negative integers. WriteX(k) = X mod k, let F (k) be the distribution ofX(k),
and writeV (k) for that subset of{0, 1, . . . , k − 1} on whichF (k) is concentrated, i.e.,
V (k) is the support ofF (k). In the algebraic viewpoint we are working on the additive
groupbbZk. Write V (k)

∗ for the subgroup ofZk generated byV (k) and letF (k)
∗ denote the

atomic distribution concentrated onV (k)
∗ which places equal mass on each of the elements

of V (k)
∗ .
We shall henceforth restrict attention to distributionsF for whichV (k) contains the

point0 as otherwise fairly trivial examples can be constructed that do not converge.
Let{Xn, n ≥ 1} be a sequence of random variables obtained by independent sampling

from F . Form the partial sumsSn = X1 + · · · + Xn. EachSn has distributionF⋆n =

F ⋆ · · · ⋆ F obtained as then-fold convolution ofF with itself. WriteS(k)
n = Sn mod k

and letF (k)
⋆n denote its distribution. ThenF (k)

⋆n is concentrated on some subsetV
(k)
n of the

set{0, 1, . . . , k − 1}. As V (k)
1 = V (k) contains the origin, it is clear that the sequence

{

V
(k)
n , n ≥ 1

}

increases to a limit set
⋃

n V
(k)
n which we may, in fact, identify with the
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subgroupV (k)
∗ generated byV (k). As we are working on the finite groupZk, it is clear

thatV (k)
n must actually coincide withV (k)

∗ for all sufficiently largen.
We are now ready for the following variation on a classical result.

Theorem 4.3. SupposeF (k) is concentrated onV (k) and suppose also that0 ∈ V (k).

Then
{

F
(k)
⋆n , n ≥ 1

}

converges weakly to the uniform atomic distributionF (k)
∗ which

places equal mass on each of the elements of the subgroupV
(k)
∗ generated byV (k).

If we identify the half-closed unit interval[0, 1) with the circleT of unit length then,
by wrapping the real line aroundT (in one or the other orientation) we may identify points
x, x±1, x±2, . . . and so on. In this viewpoint the sequence of (normalized) partial sums,
{

1
k
S

(k)
n , n ≥ 1

}

represents a random walk on the vertices0, 1/k, . . . ,(k−1)/k of a regular
polygon embedded inT. Theorem 4.3 is hence a statement about the weak convergence
of a particular sequence of distributions concentrated on aregularly spaced set of points
on the circleT.

The conditions are reminiscent of Weyl’s equidistributiontheorem. In that setting
we begin with an atomic distributionF1 = F placing all its mass at a single irrational
point x in T; we now construct a sequence of distributions{Fn, n ≥ 1} with Fn placing
equal mass on the pointsx, 2x, . . . , nx in T. The analysis now proceeds in exactly
the same fashion with the conclusion now that{Fn, n ≥ 1} converges weakly to the
uniform distribution onT or, in the language of analysis, the sequence{nx, n ≥ 1} is
equidistributed onT.

Corollary 4.3. For a givenk ≥ 2, if F (k) places positive mass on both0 and 1, or

if F (k) places positive mass on0, s, and t where s and t are relatively prime, then

dTV

(

L(S
(k)
n ),L(U (k))

)

→ 0 asn→ ∞.

Corollary 4.4. If F places positive mass on0 and1 thenlimn dTV

(

L(S
(k)
n ),L(U (k))

)

= 0

for everyk ≥ 2.

We have stated Theorem 4.3 for lattice distributions on the line to keep the notation
and presentation unencumbered. But a little introspectionshows that the proof carries
through essentiallyin toto in two and more dimensions. With proper notation, we can
present the multidimensional result in the same form as in the one dimensional case.
Supposed ≥ 1 is a positive integer andk = (k1, . . . , kd) a vector of moduli. We work in
(Z+)d and identify the additive groupZk = Zk1 × · · · ×Zkd

= {0, 1, . . . , k1 − 1}× · · · ×
{0, 1, . . . , kd−1} to be the lattice points in ad-dimensional rectangle with vector modulo
k operations interpreted component-wise. We suppose now that X = (X1, . . . , Xd) is a
lattice vector whose distributionF has support in(Z+)d. Reusing notation, letX(k) =

X mod k denote the vector residue modulok, and writeF (k) for its distribution andV (k)

for the subset ofZk on whichF (k) is concentrated. As before, we writeV (k)
∗ for the
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subgroup ofZk generated byV (k) andF (k)
∗ for the vector atomic distribution placing

equal mass at each of the points inV (k)
∗ .

Theorem 4.4. Theorem 4.3 holds in ad-dimensional setting wherek = (k1, . . . , kd)

represents any vector of moduli.

Corollary 4.5. For a given vector of modulik = (k1, . . . , kd), supposeF (k) places pos-

itive mass at the origin as well as on thed lattice points(i1, . . . , id) neighboring the

origin where precisely one of the indicesij takes value1 with all the others being0.

LetS(k)
n = Sn mod k represent the modulo residues of the corresponding vector random

walk and letU (k) represent a random vector with the uniform distribution onZk. Then

dTV

(

L(S
(k)
n ),L(U (k))

)

→ 0 asn→ ∞.

The adaptation of the proofs in one dimension requires nothing more than to strike
out the references to a scalar modulusk and replace them by a vector modulusk =

(k1, . . . , kd), and replace references tocard Zk = k in the scalar case bycard Zk =

k1 · · · kd in the vector case.
Theorems 4.3 and 4.4 show how distributional convergence ofmodulo residues can

arise from a wide range of basic distributions via convolutions. Many of the standard
distributions fall under its sway: the Binomial(n, p) distribution arises out of repeated
convolutions of the Bernoulli(p) distribution; the Poisson distribution is closed under
convolutions and hence the Poisson(n) distribution is obtained by repeated convolutions
of the Poisson(1) distribution; the Negative Binomial(n, p) distribution arises out of re-
peated convolutions of the Geometric(p) distribution. As the Bernoulli(p), Poisson(1),
and Geometric(p) distributions all put mass at both0 and1, it follows as a special case
that there is distributional convergence for the modulo residues for the binomial, Poisson,
and negative binomial cases [see Examples 2.1, 2.2, 4.5]. However, if we takeF to be the
distribution of twice a Poisson random variable, thenF does not put any mass at1 and the
modulo residues do not converge to the uniform. We believe that Theorem 4.3 explains
a critical feature of the problem: basically long convolutions made out of a distribution
putting mass at both0 and1 will exhibit the convergence to uniformity property.

While the theorem provides a concrete construction of a largefamily of settings for
which there is distributional convergence for modulo residues, it is not exhaustive. The
zeta and geometric distributions provide examples of distributions for which modulo
residues converge weakly butthese distributions do not arise out of convolutions[see
Examples 2.3, 2.4]. The convergence of moduli residues withthe parameterp for the
negative binomial distribution going to0 [Example 4.5] illustrates another setting where
the convolutional character of the distribution is incidental.

Theorem 4.3 provides a usefulconstructivecounterpart to thestructural characteri-
zation of Theorem 4.1. Both, however, leave finer questions on the rate of convergence
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open. We turn to this next.

4.3 Connection to the Euler-Maclaurin Formula

If the sequence of mass functions,{fn, n ≥ 1}, possesses a sufficiently smooth, tractable
interpolation then Euler-Maclaurin summation provides anelegant approach to getting at
convergence rates.

Suppose that, for eachn, the mass functionfn(i) with support in the non-negative
integers{0, 1, 2, . . . } has been extended via a smooth interpolation to a functionfn(x) on
the half-line[0,∞). By “smooth” we mean that the functionfn extended in this fashion
possesses sufficiently many continuous derivatives on(0,∞). Now fix integersk ≥ 2,
0 ≤ j ≤ k − 1, q > 0, andm > 0. Let also, as usual,Bs, s ≥ 2, denote theBernoulli

numbers: these are non-zero only for even valuess, B2 = 1/6, B4 = −1/30, etc. If
fn is 2m times continuously differentiable on(0,∞), then, by a change of variable of
integration in the Euler-Maclaurin formula [see, e.g., Olver (1997, pp. 279–286)],

q
∑

l=0

fn(kl + j) =

∫ q

0

fn(kx+ j) dx+
1

2

[

fn(j) + fn(kq + j)
]

+
m−1
∑

s=1

k2s−1B2s

(2s)!

[

f (2s−1)
n (kq + j) − f (2s−1)

n (j)
]

+Rq(m)

=
1

k

∫ kq+j

0

fn(x) dx− 1

k

∫ j

0

fn(x) dx+
1

2

[

fn(j) + fn(kq + j)
]

+
m−1
∑

s=1

k2s−1B2s

(2s)!

[

f (2s−1)
n (kq + j) − f (2s−1)

n (j)
]

+Rq(m).

where, writingVI for total variation over an intervalI, the remainder termRq(m) may
be bounded absolutely by|Rq(m)| ≤ C(k,m)V[j,kq+j](f

(2m−1)
n ) for an absolute positive

constantC(k,m) determined solely byk andm. Lettingq → ∞ we obtain

P (Xn mod k = j) =
∞
∑

l=0

fn(kl + j) =
1

k
− 1

k

∫ j

0

fn(x) dx+
1

2
fn(j)

−
m−1
∑

s=1

k2s−1B2s

(2s)!
f (2s−1)

n (j) +Rm, (19)

where the remainder may be bounded absolutely by|Rm| ≤ C(k,m)V[0,∞)(f
(2m−1)
n ).

The expansion is valid asymptotically providedfn and its first2m− 3 derivatives vanish
as x → ∞ and f (2m−1)

n is of bounded variation on the half-line[0,∞). When such
a tractable smooth interpolation exists, (19) provides an effective practical method for
numerical approximation ofP (Xn mod k = j).
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Example 4.7. Interpolating the geometric distribution.Consider the failure geometric
distribution with mass functionP (X = n) = pqn with q = 1 − p. Direct summation
gives the exact expression

P (X mod k = j) =
pqj

1 − qk
=

1

k
+

(

1

2
− j + 1

2

k

)

p+
k2 − 6jk + 6j2 − 1

12k
p2 +O(p3).

(20)
This is the same as the expression obtained in Example 2.4 with p = 1 − e−1/λ andλ
serving in the role of the asymptotic parameter.

The natural interpolation of the geometric distribution is, of course,fn(x) = pqx with
support in[0,∞). Applying (19) withm = 2 hence gives

P (X mod k = j) =
1

k
− p

k

∫ j

0

qxdx+
pqj

2
− k

12
pqj log q +R2(p)

=
1

k
− p

k

qj − 1

log q
+
pqj

2
− k

12
pqj log q +R2(p)

=
1

k
+

(

1

2
− j

k

)

p+
k2 − 6jk + 6j2

12k
p2 +O(p3) +R2(p). (21)

A comparison of (20,21) shows that the coefficients ofp andp2 are slightly different. This
is because the remainder termR2(p) has not been exactly written out; when it is, the two
asymptotic expansions will coincide.

It is useful to compare these findings with those of Examples 2.1 and 2.2. Unlike those
cases where convergence to the limiting value is exponentially fast, in the geometric case,
convergence occurs only at a polynomial rate as was seen in Example 2.4 and as (20,21)
again aver.

Example 4.8. Interpolating the zeta distribution.The zeta distribution of Example 2.3
admits the smooth interpolation

f(x) = f(x; z) =
x−z

ζ(z)
(x ≥ 1)

with parameterz > 1. Restricted to the positive integers this recovers the zetadistribu-
tion (3). Then

f (2s−1)(j) = −z(z+1) . . . (z+2s−1)
j−z−2s+1

ζ(z)
= −

[

(2s−1)!+O(z−1)
]

· e
−(z−1) log(j)

j2sζ(z)

and it is easy to verify thatP (X mod k = j) = 1
k
+O(z−1) asz ↓ 1 though interestingly,

the convergence is very slow.

For a given lattice distribution, the utility of the approach depends upon our ability to
find a natural, smooth interpolation as in these examples. Inreverse, we may also start
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with a suitably smooth density on the half-line[0,∞) and, by considering its restriction
to the non-negative integers, inherit a lattice distribution for which the moduli residues
converge in distribution. (A normalizing constant may appear in general but it is easily
handled.) Such settings are relevant in applications in vector quantization.

Where available, the Euler-Maclaurin expansion (19) also gives us useful information
about when convergence to the limiting value1/k should be exponentially fast. Suppose
the lattice-valued random variableXn has a convolution form,Xn = Y1 + Y2 + · · ·+ Yn,
where theYi are i.i.d. have a moment generating function in a neighborhood of zero.
Then, by large deviation theory for partial sums [see, e.g.,Varadhan (1984)], the term
∫ j

0
fn(x)dx ≈ P (Xn ≤ j) would be exponentially small. By large deviation theory for

local limit theorems [c.f. Richter (1957), Chaganty and Sethuraman (1985)], the term
fn(j) would also be exponentially small. Thus, if the oscillations of the sequence of
functionsfn die at exponential rates, then by (19),P (Xn mod k = j)− 1

k
would converge

to zero at a suitable exponential rate. In the absence of sucha convolution structure it
would be difficult to assert anything general about exponentially fast convergence.

4.4 Writing Out the Oscillatory Term

Expression (19) also explains the reason for the oscillation in P (Xn mod k = j) that we
evidenced in some of the illustrative examples in Section 2.The remainder term in (19)
has the precise form

Rm =

∫ ∞

0

B2m −B2m(x− ⌊x⌋)
(2m)!

f (2m)
n (x) dx,

whereB2m is the 2mth Bernoulli number andB2m(t) is the Bernoulli polynomial of
degree2m. Using the Fourier expansion

B2m(t) =
2(−1)m+1(2m)!

(2π)2m

∞
∑

j=1

cos 2πjt

j2m
, (22)

together with the formula for even-ordered Bernoulli numbers

B2m =
2(−1)m+1(2m)!

(2π)2m
ζ(2m) =

2(−1)2m+1(2m)!

(2π)2m

∞
∑

j=1

1

j2m
, (23)

[see, e.g., Olver (1997, pp. 283–285), for (22,23)], the remainder may be written explicitly
in the form

Rm =
2(−1)m+1

(2π)2m

∞
∑

j=1

1

j2m

∫ ∞

0

[

1 − cos
(

2πj(x− ⌊x⌋)
)]

f (2m)
n (x) dx, (24)
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providedf (2m)
n is absolutely integrable on(0,∞) so that the integration can be performed

term by term. The expression (24) for the remainder gives an explanation for the presence
of an oscillatory term inP (Xn mod k = j).

By combining the arguments leading to (19) and (24), we obtain the following general
theorem.

Theorem 4.5. LetX be an integer-valued random variable taking values0, 1, 2, · · · with

mass functionP (X = j) = f(j), wheref : [0,∞) → [0,∞) is a density function satis-

fying the following properties:

(a) f is ultimately decreasing;

(b) There is an even integer2M such thatf is 2M times continuously differentiable on

(0,∞);

(c) limx→∞ f(x) = limx→∞ f (2s−1)(x) = 0 for everys = 1, 2, · · · ,M − 1;

(d) f (2M) is absolutely integrable on(0,∞).

Fix any integerk ≥ 2 and0 ≤ j ≤ k − 1. Then,

P (X mod k = j) =
1

k
− 1

k

∫ j

0

f(x) dx+
1

2
f(j) −

M−1
∑

s=1

k2s−1B2s

(2s)!
f (2s−1)(j)

+
2(−1)M+1

(2π)2M

∞
∑

j=1

1

j2M

∫ ∞

0

[

1 − cos
(

2πj(x− ⌊x⌋)
)]

f (2M)(x) dx. (25)

We may now simply read out the conditions for distributionalconvergence of modulo
residues.

Corollary 4.6. Suppose that the non-negative integer-valued random variableXn has a

mass function for which there exists a smooth,2m-times differentiable interpolationfn

satisfying the following asymptotic properties:

(a) For any fixedt,
∫ t

0
fn(x) dx→ 0 and alsof (2l−1)

n (t) → 0 for 0 ≤ l ≤ m− 1.

(b) V[0,∞)

(

f
(2m−1)
n

)

→ 0.

ThendTV

(

L(X
(k)
n ),L(U (k))

)

→ 0 for eachk ≥ 2.

Theorem 4.5 gives a purely analytical explanation for why lattice random variables

that have a flat and well-behaved mass function are approximately uniform when mea-

sured modk for anyk; the approximate uniformity is transparent from the representation

on the right in(25)as every term other than1
k

would be small.
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We close this subsection with the observation that it is possible to use the mulivariate
version of the Euler-Maclaurin summation formula [see Bhattacharya and Rao (2010,
p. 296)] to obtain a version of Theorem 4.5 in two or more dimensions much in the same
way as Theorem 4.4 expanded the purview of Theorem 4.3. The cost is in a rapidly
burgeoning notational complexity and we eschew the details.

4.5 The Moments

Let X be a general non-negative integer-valued random variable and let k ≥ 2 be a
fixed integer. The formula in (25) for the mass function ofX mod k does not lead to
any worthwhile general formula for the moments ofX mod k. Although neat general
formulas seem quite difficult, a Fourier approach, instead of a direct attack by using equa-
tion (25), does help in writing a general formula for the moments, and this formula leads
to some simplification of the low order moments. Here is the general Fourier formula.
We first need to lay out some notation.

We denote

X(k) = X mod k;

pj(k) = P (X(k) = j);

µn(k) = E[X(k)]n;

ψX(t) = The characteristic function ofX;

ψc,X(t) = The Fourier cosine transform ofX;

ψs,X(t) = The Fourier sine transform ofX;

zr = 2πr
k

;

Bk = kth Bernoulli number;
αn,m(t) =

∑m
j=1 j

n cos(tj);

βn,m(t) =
∑m

j=1 j
n sin(tj).

In particular, we haveψX(zr) = ψc,X(zr) + iψs,X(zr) while we may also identify

k−1
∑

j=1

jn(e−izr)j = αn,k−1(zr) − iβn,k−1(zr).

Identifyingzr = 2πr/k in the Fourier identity (13), we obtain

µn(k) =
k−1
∑

j=1

jnpj(k) =
k−1
∑

j=1

jn

[

1

k
+

1

k

k−1
∑

r=1

(e−i zr)jψX(zr)

]

=
1

k

[k−1
∑

j=1

jn +
k−1
∑

j=1

k−1
∑

r=1

ψX(zr)j
n(e−izr)j

]

=
1

k

[k−1
∑

j=1

jn +
k−1
∑

r=1

ψX(zr)
k−1
∑

j=1

jn(e−i zr)j

]

(26)
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In view of the identity

p
∑

j=1

jn =
1

n+ 1

n
∑

j=0

(−1)j

(

n+ 1

j

)

Bj p
n+1−j,

we may combine (13,26), to get the following general result.

Theorem 4.6.

µn(k) =
1

k

[

1

n+ 1

n
∑

j=0

(−1)j

(

n+ 1

j

)

Bj (k − 1)n+1−j

+
k−1
∑

r=1

{

αn,k−1(zr)ψc,X(zr) + βn,k−1(zr)ψs,X(zr)
}

]

.

This is a general moment formula valid for arbitraryn andk and generalX. No
further simplification seems possible, except in specific cases. For example, ifn = 1, the
functionsαn,k−1 andβn,k−1 simplify and we obtain the following corollary.

Corollary 4.7. For generalX andk, the first moment ofX mod k equals

µ1(k) =
1

k

[

k(k − 1)

4
−1

4

k−1
∑

r=1

csc2
(zr

2

){

(

1+(k−1) cos(kzr)−k cos((k−1)zr)
)

ψc,X(zr)

+
(

(k − 1) sin(kzr) − k sin((k − 1)zr)
)

ψs,X(zr)
}

]

. (27)

Here is an example that uses Corollary 4.7.

Example 4.9. SupposeX ∼ Poisson(λ). Consider the casek = 3; thus,X mod k takes
the values0, 1, 2. We would expect its mean to be c;ose to1 for largeλ; how close? For
example:

How large aλ is needed to make|1 − E(X mod 3)| < ǫ?

In the Poisson case, the Fourier cosine and the Fourier sine transforms can be written in
closed form:

ψc,X(t) = 1
2

(

eλ(eit−1) + eλ(e−it−1)
)

; ψs,X(t) = eλ(cos t−1) sin(λ sin t).

The values ofzr are 2
3
π, 4

3
π, andcos(kzr), cos((k − 1)zr), sin(kzr), sin((k − 1)zr), and

csc( zr

2
) are easily found in closed form. After some intermediate calculations, formula (27)

leads to

E(X mod 3) = 1 − e−3λ/2



cos

(

λ
√

3

2

)

+
sin
(

λ
√

3
2

)

√
3



 . (28)
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So, |1 − E(X mod 3)| = O(e−3λ/2). Going further, the functioncos(λ
√

3
2

) +
sin( λ

√

3
2

)√
3

is
bounded in absolute value by1. Hence, using (28), we see that|1 − E(X mod 3)| < ǫ

for λ > log ǫ−2/3.
Theorem 4.6 also results in this following general approximation bound on the mo-

ments ofX mod k.

Theorem 4.7. Let U (k) denote a uniform random variable on the set{0, 1, . . . , k − 1}
and letνn(k) = E

[(

U (k)
)n]

. Then, for anyk andn,

sup
n≥1

∣

∣

∣

∣

µn(k)

νn(k)
− 1

∣

∣

∣

∣

≤ (k − 1) sup
2π
k
≤t≤ 2π(k−1)

k

|ψX(t)|.

The main appeal of Theorem 4.7 is that it will often provide anexponential conver-
gence result for the moments.
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5 Appendix

Proof of Theorem 4.1: Select anyk ≥ 2. We will prove a little more than advertised and
show indeed that

∣

∣P
(

X(k) = j
)

− 1
k

∣

∣ ≤ 4mM (0 ≤ j ≤ k − 1). (29)

The claimed result follows from the observation that

dTV

(

L(X(k)),L(U (k))
)

=
1

2

k−1
∑

j=0

∣

∣

∣

∣

P
(

X(k) = j
)

− 1

k

∣

∣

∣

∣

.

For i ≥ 0, setΩi = {ik, ik + 1, . . . , (i + 1)k − 1}. Fix any0 ≤ j ≤ k − 1. Each
Ωi then contains a unique elementtij of the formαk + j. Thentij ≡ j (mod k), and
the collectionEj = {tij, i ≥ 0} forms an equivalence class of elements all congruent toj

modulok. We then see that

P
(

X(k) = j
)

− 1

k
= P (X ∈ Ej) −

1

k
=
∑

i

f(tij) −
1

k

∑

t

f(t)

=
∑

i

1

k

∑

t∈Ωi

f(tij) −
1

k

∑

i

∑

t∈Ωi

f(t)

as, on the one hand,card Ωi = k for eachi, and, on the other, the collection{Ωi, i ≥ 0}
partitionsZ

+. By consolidating the sums we hence obtain
∣

∣

∣

∣

P
(

X(k) = j
)

− 1

k

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

i

1

k

∑

t∈Ωi

(

f(tij) − f(t)
)

∣

∣

∣

∣

≤
∑

i

1

k

∑

t∈Ωi

∣

∣f(tij) − f(t)
∣

∣. (30)

We now proceed by partitioning to exploit the modal nature ofthe distribution. AsX
hasm distinct (equivalence classes of) modes we may identify an increasing sequence
−∞ = η0 < ξ1 < η1 < ξ2 < η2 < · · · < ηm−1 < ξm < ηm = +∞ such that, for eachj,
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f(t) is non-decreasing forηj−1 ≤ t ≤ ξj and non-increasing forξj ≤ t ≤ ηj. Write I for
the set of indicesi for which Ωi contains one or more of the extremum pointsξ1, η1, ξ2,
. . . ,ηm−1, ξm. It is clear that1 ≤ card(I) ≤ 2m− 1.

Split the sum overi on the right in (30) and write
∑

i =
∑

i∈I +
∑

i6∈I . We may
accordingly bound

∣

∣P
(

X(k) = j
)

− 1
k

∣

∣ ≤
∑′ +

∑′′ (31)

where
∑′ accumulates the terms fori ∈ I and

∑′′ accumulates the remaining terms for
i 6∈ I.

Simple bounds suffice for the contribution from the termsi ∈ I. As |f(s)−f(t)| ≤M

for all integerss andt, it follows that

∑′ =
∑

i∈I

1

k

∑

t∈Ωi

∣

∣f(tij) − f(t)
∣

∣ ≤M card(I) < 2mM.

We will need to be a little more careful in bounding the contribution from the termsi 6∈ I.
After removing the setI, the remaining integers inZ+ \ I may be grouped into maximal,
pairwise disjoint collections of successive indices, say,{Iλ, λ ∈ Λ}, wherecard Λ ≤ 2m,
and eachIλ is a maximal unbroken sequence of successive integers such that

⋃

i∈Iλ
Ωi is

either contained in an open interval of the form(ηj−1, ξj) or contained in an open interval
of the form(ξj, ηj) for somej. In the former case, the valuesf(t) are non-decreasing as
t varies through

⋃

i∈Iλ
Ωi and we say thatIλ is “increasing”; in the latter case, the values

f(t) are non-increasing ast varies through
⋃

i∈Iλ
Ωi and we say thatIλ is “decreasing”.

By partitioning the sum further, we see that

∑′′ =
∑

i6∈I

1

k

∑

t∈Ωi

∣

∣f(tij) − f(t)
∣

∣ =
∑

λ∈Λ

(

∑

i∈Iλ

1

k

∑

t∈Ωi

∣

∣f(tij) − f(t)
∣

∣

)

. (32)

Suppose first thatIλ is increasing. Then there existsj such that
⋃

i∈Iλ
Ωi ⊂ (ηj−1, ξj). If

i ∈ Iλ then, for alls, t ∈ Ωi, we have|f(s)−f(t)| ≤ f
(

(i+1)k
)

−f(ik) and accordingly,

∑

i∈Iλ

1

k

∑

t∈Ωi

∣

∣f(tij) − f(t)
∣

∣ ≤
∑

i∈Iλ

1

k

∑

t∈Ωi

[

f
(

(i+ 1)k
)

− f(ik)
]

(∗)
=
∑

i∈Iλ

[

f
(

(i+ 1)k
)

− f(ik)
]

≤ f(ξj) − f(ηj−1) ≤M

as the intervals{Ωi, i ∈ Iλ} form an unbroken succession and so the sum in(∗) tele-
scopes to its endpoints. Suppose next thatIλ is decreasing. Then there existsj such
that

⋃

i∈Iλ
Ωi ⊂ (ξj, ηj). If i ∈ Iλ then, for alls, t ∈ Ωi, we have|f(s) − f(t)| ≤
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f(ik) − f
(

(i+ 1)k
)

and accordingly, by a similar telescoping argument,

∑

i∈Iλ

1

k

∑

t∈Ωi

∣

∣f(tij) − f(t)
∣

∣ ≤
∑

i∈Iλ

1

k

∑

t∈Ωi

[

f(ik) − f
(

(i+ 1)k
)]

=
∑

i∈Iλ

[

f(ik) − f
(

(i+ 1)k
)]

≤ f(ξj) − f(ηj) ≤M.

Thus, in all cases, the term enclosed in round brackets in (32) is bounded above byM and
so
∑′′ ≤M card Λ ≤ 2mM . Pooling bounds on the right in (31) gives (29).

Proof of Theorem 4.2: The proof follows by conditioning onK and leveraging (29).

Proof of Theorem 4.3: The proof follows a standard line and we simply sketch the main
points. We begin by initially supposing that the supportV (k) of F (k) already coincides
with V (k)

∗ . Then all subsequent convolutional iterates have the same support:V (k)
n = V

(k)
∗ .

By Helly’s selection principle, there exists a subsequence
{

F
(k)
⋆ni , i ≥ 1

}

converging
weakly to a distribution, say,G concentrated onV (k)

∗ . Starting anew withG, we construct
a new sequence of distributions{Gn, n ≥ 0} by repeated convolution withF (k) by first
settingG0 = G and, forn ≥ 1, recursively formingGn = F (k) ⋆ Gn−1. As G is
concentrated onV (k)

∗ andF (k) places non-zero mass on the point0 it follows that each of
the convolutional distributionsGn is also concentrated onV (k)

∗ .
NowF

(k)
⋆ni+1 = F (k) ⋆ F

(k)
⋆ni andG1 = F (k) ⋆G0. AsF (k)

⋆ni → G0 weakly, it follows that
{

F
(k)
⋆ni+1, i ≥ 1

}

converges weakly toG1. By induction, it follows that
{

F
(k)
⋆ni+j, i ≥ 1

}

converges weakly toGj for eachj ≥ 0.
Forn ≥ 0, letMn = maxt∈Zk

F
(k)
⋆n {t} denote the largest atomic mass of the distribu-

tion F (k)
⋆n . Clearly,0 < Mn ≤ 1. Then

F
(k)
⋆n+1{t} =

∑

s∈Zk

F (k)
⋆n {t− s}F (k){s} ≤Mn

∑

s∈Zk

F (k){s} = MnF
(k)(Zk) = Mn

for every t ∈ Zk, and soMn+1 ≤ Mn. As {Mn, n ≥ 0} is a non-increasing sequence
bounded below, it has a limit, say,M . As every subsequence of a convergent sequence
has the same limit, it follows thatMni+j → M for eachj ≥ 0. We conclude that
maxt∈Zk

Gj{t} = M for eachj ≥ 0.
We now argue that, in fact,G0{t} = M for eacht ∈ V

(k)
∗ . Suppose, on the contrary,

thatG{t} < M for somet ∈ V
(k)
∗ . We then see that

G1{τ} = G0{t}F (k){τ − t} +
∑

s∈Zk\{τ−t}
G0{τ − s}F (k){s}

< MF (k){τ − t} +
∑

s∈Zk\{τ−t}
G0{τ − s}F (k){s}.
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The inequality is strict as, by assumption,F (k) has support in all ofV (k)
∗ and so it is the

case thatF (k){τ − t} > 0. Bounding the remaining terms in the sum on the right, we
obtain

G1{τ} < MF (k){τ − t} +MF (k)
(

Zk \ {τ − t}
)

= M

for everyτ ∈ Zk. It must hence follow under the reductio ad absurdum assumption that
M > maxτ G1{τ} = M and we have a contradiction. We conclude thatG0{t} = M for
everyt ∈ V

(k)
∗ and, by induction, that, for eachj ≥ 0, we must haveGj{t} = M for all

t ∈ V
(k)
∗ . We have hence shown that there is a constantM such thatF (k)

⋆n {t} → M for
everyt ∈ V

(k)
∗ . But then this constant must be equal to1/ cardV

(k)
∗ and soF (k)

⋆n converges
weakly toF (k)

∗ , the uniform distribution concentrated onV (k)
∗ .

To complete the proof we now remove our initial assumption thatV (k) is a subgroup of
Zk to begin with. Suppose now that the generatorV (k) is a proper subset of the subgroup
V

(k)
∗ generated by it. AsV (k) includes the point0, we recall that the sequence of supports
{

V
(k)
n , n ≥ 0

}

is increasing with limit set
⋃

n V
(k)
n = V

(k)
∗ . As cardV

(k)
∗ ≤ k, there must

in fact exist an integerN such that the supportV (k)
N of the distributionF (k)

⋆N coincides
with the subgroupV (k)

∗ . It follows thatV (k)
n = V

(k)
∗ for all n ≥ N and, in particular,

the subsequence{F (k)
⋆nN , n ≥ 1} consists of distributions all concentrated on the subgroup

V
(k)
∗ . As convolution is associative,F (k)

⋆2N = F
(k)
⋆N ⋆ F

(k)
⋆N , F (k)

⋆3N = F
(k)
⋆N ⋆ F

(k)
⋆2N , and so

on, so that the entire subsequence can be built up by repeatedconvolutions of the basic
distributionF (k)

⋆N . By the just concluded proof of the simplified setting, the sequence
{

F
(k)
⋆nN , n ≥ 1

}

converges weakly toF (k)
∗ .

Now consider the subsequence
{

F
(k)
⋆nN+1, n ≥ 1

}

obtained by convolving each mem-
ber of the sequence

{

F
(k)
⋆nN , n ≥ 1

}

with F (k). On the one hand,F (k)
⋆nN+1 = F (k) ⋆ F

(k)
⋆nN ,

while, on the other,

F (k) ⋆ F (k)
∗ {t} =

∑

s∈Zk

F (k)
∗ {t− s}F (k){s} =

1

cardV
(k)
∗

∑

s∈V (k)

F (k){s} =
1

cardV
(k)
∗

for everyt ∈ V
(k)
∗ so thatF (k) ⋆ F

(k)
∗ = F

(k)
∗ . It follows that

{

F
(k)
⋆nN+1, n ≥ 1

}

converges
weakly toF (k)

∗ and, by induction,
{

F
(k)
⋆nN+j, n ≥ 1

}

converges weakly toF (k)
∗ for each

j ≥ 0. We conclude that
{

F
(k)
⋆n , n ≥ 1

}

converges weakly toF (k)
∗ .

Corollaries 4.3 and 4.4 follow quickly by B́ezout’s identity [see, for example, Niven
and Zukerman (1980, Theorem 1.3, p. 7)] as, in both cases,V (k) is a generator of the
additive groupZk.
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