The Exact and Asymptotic Distributions of X
mod £ and Various Analytical Connections

ANIRBAN DASGUPTA* THOMAS M. SELLKE| SANTOSH S. VENKATESH!

February 29, 2016

ABSTRACTFor a general sequence of non-negative integer-valuesdnardriables
X, and a fixed integek: > 2, the distribution ofX,, mod & for fixed n and asymptotic
distributions asn — oo are studied by using various mathematical tools. The speed
of convergence is also considered. The convergence toromtipis linked to several
things, such as Fourier analysis, Weyl's equidistributioeorem and convolutions, the
Euler-MacLaurin summation formula, a Tauberian theoremd, arkov chains.

In particular, Euler-Maclaurin summation allows one totealmost a necessary and
sufficient condition for convergence to uniformity, andaaksxplains oscillation on the
way to convergence.

It is shown that in some important special cases, such asihanegative binomial,
and Poisson, the exact distributions for fixe&dmit closed form formulas in terms of
special functions, the limit being uniform in appropriataiting paradigms.

Convergence to uniformity can fail when polynomials of ledtvariables are consid-
ered. In such cases, results on congruences tell us whattielistribution will be, and
when the limit will still be uniform.

Extensions to the multidimensional case as well as the caseaxhe modulus itself
is random are indicated, and the theorems are illustratddmany examples and plots.
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1 Introduction

Let X be a non-negative integer-valued random variable, fand 2 a fixed positive
integer. We study the distribution of mod £ and interesting functionals, for example
the moments, using a number of mathematical tools. The te®d include analysis, in
particular Tauberian theorems, Fourier analysis, numibeory, asymptotic expansions,
and Markov chains in some special cases. In a more generalafahis setting we
consider a sequence of non-negative integer-valued ranvdaoables, sayX,,, and study
the asymptotic distribution oX,, mod k, convergence of the moments, and the rate of
convergence; e.gd., is convergence exponentially fast?

The problem we treat here is in some sense a natural exteokRoincare’s roulette
problem. We do not claim to have broken new ground probaigitiBy in this article. But
we have given a set of rather pretty calculations and exanpled we have shown how
the same problem is connnected to many classical facets thiematics. The appeal of
our article is in the connections and the calculations.

The Poisson distribution is an obvious special caseX,lfis Poisson with mean,
then, moduld:, X,, admits the recursioX,, = X,,_; +Y,,, where theY,, sequence is i.i.d.
The modk problem in such a convolution setting arises if one wantsudysthe position
of a random walker on the non-negative integers, where augirstarts over when the
walker reaches or goes past a givenThe study of the asymptotic aspects of this case
is amenable to classical Markov chain techniques; two fipally relevant references
are Hildebrand (1990) and Diaconis (1992). Hildebrand arat@nis both point out that
second eigenvalue techniques do not generally lead to ttepbssible answers in this
case. Fourier methods have more to offer.

The results of this article have a few different aspects:aspect is studying the distri-
bution of X mod £ for a fixed lattice random variabl& in interesting special cases, such
as the Poisson, binomial, and the negative binomial; inetlr@ses we provide explicit
closed form formulas for the modulo residues in terms of hgpemetric functions.

A second aspect arises by taking a sequéengef lattice random variables and study-
ing the asymptotic distribution ok, mod . In this story, we show that there is an un-
derlying connection of this problem to the theme of Weyl'siiglgstribution theorem. If
the distribution ofX,, has a convolutional structure&s,, = Y; + --- + Y,,, where they;
are i.i.d. and the common distributianof the Y; puts positive mass at bothand1, then
the distribution ofX,, mod & will approach the uniform distribution on the set of residue
{1,2,--- ,k — 1} whenn — oo, and this condition cannot be relaxed. But we also show
that X,, need not have a convolution structure for convergence toumity for X,, modk
to take place; if (for largex) X, has a finite number of modes,, and a global maximum
M, then the distribution of,, mod & will approach the uniform of1,2,--- ,k—1} as



long asm,, M,, — 0.

A third aspect is determining the speed of convergence tmumity (when it hap-
pens) and understanding the oscillatory nature of thisem®ance. Here quite a different
technique becomes useful. We show by use of the Euler-Magiaummation formula
that if the mass functiorf,, of X, is inherited from a very smooth density function on
[0, 00), then convergence to uniformity takes place, and addilignae can say some-
thing about how fast the convergence occurs.

A fourth aspect is understanding cases of failure and sadgatlpe failures. Here,
we find other connections. We show by use of well-known th&sren congruence that
prime powers and well-behaved polynomials conform to cayaece to uniformity, but
otherwise in general it fails.

Here is a short description of what is in this article:

a) Section 2 starts out with a number of examples that iltista diversity of phenom-
ena; for instance, oscillation, lack of oscillation, ragionvergence, slow convergence,
failures of a general theorem, etc.

b) Section 4 lays out a general story of convergence and msm€he connection to
convolution structures is laid out in Theorem 4.3 togeth&hWorollary 4.3 and Corol-
lary 4.4. Theorem 4.4 and Corollary 4.5 show the multidimenal extensions.

The connection to smooth interpolation and the Euler-Macineformula are laid out
in Theorem 4.5 and Corollary 4.6. Theorem 4.6 and TheoremiderFpurier bounds on
rapidity of the convergence of moments. Section 4.4 shovesevtine oscillatory behavior
comes from in certain cases.

¢) The important Poisson case is picked up in Section 3. Bme@:.1 gives the exact
formula for the distribution of the residues of a Poissonalae modulok by using hy-
pergeometric functions. Lemma 3.1 is the Tauberian coimecAs is well known, the
Poisson case is suited for Markov chain methods; this is sffowcompleteness as part
of the proof of Theorem 3.2. Failures and connections to @niowers are described in
Section 3.3.

d) Section 3.4 is the binomial and negative binomial analiog/lmat is in Section 3.
Again, exact formulas are given (Theorem 3.6, Theorem Edjvergence to uniformity
is handled at the same time.

e) Many examples, figures, and tables are given in variousosscto motivate and
illustrate the results.



2 First [Hlustrative Examples

We begin by a consideration of the usual lattice distrilbngio

Example 2.1. (The binomial). SupposeX ~ Binomial(n, 1/2) represents the accumu-
lated successes intosses of a fair coin. Then,

/5]
P(5 dividesX) = P(X mod 5=0) = <5"> g n
— \5;
j=0

1 2 " nm 1\" 2nm
“5%5 K§> wos(5) + (@) COS(T)] @)
wherep = (/5 +1)/2 = 1.618--- is the golden ratio and/¢ = (V5 —1)/2 =
0.618--- is the golden ratio conjugate. Thus, for exampley ifs an even multiple of
5, then P(X mod 5 = 0) has a positive jump, while it is an odd multiple ob, then
P(X mod 5 = 0) has a negative jump. The function is oscillatory.

Sinceyp/2 and1/(2¢) are both less thah we see thaP(X mod 5 = 0) converges to
1/5 asn — oco. Itis interesting to note, however, that the second ternménformula (1)
is oscillatory, although it decays exponentially quicklyttwn. Figure 1 shows that the
oscillations are significant for up to abouso.

Oscillatory behaviour arises in other directions as wellljufe 2 shows that the prob-
abilities P (5 | Binomial(n, p)) are also oscillatory ip for givenn, the oscillation gradu-
ally dying off asn increases.

Example 2.2. (The Poisson case)SupposeX ~ Poissofi)), the Poisson distribution
with mean)\. Then, by a direct calculation

®

. e\ 12 A
P(3 dividesX) = P(X mod 3 =0) = TR + ge’SA/Q cos.(i§ ) (2)

j=
P{5 | Binomial(z, 0.5)}
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Figure 1: Oscillatory convergence df(5 | Binomial(n,0.5) asn increases.
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P{5 | Binomial(n, p)}
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Figure 2: Oscillations inp for the distribution of binomial residues moduio

This obviously converges tb/3 when\ — oco. However, again, it is interesting that it
contains a very small oscillatory terée 3/ cos(2¥2 ) converging to zero.

P{Poisson(A) mod 3 = k}
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Figure 3: Oscillatory convergence of the distribution of Poisson residues maxiulo

In fact, there is nothing particularly special abddtX mod 3 = 0); similar exact
formulas for P(X mod 3 = 1) and P(X mod 3 = 2) show that these too converge to
1/3, while possessing small oscillatory terms. The exact féasare:

+ ZeM2gin (@) 5

2
3
263)‘/2 sin(—g\/gg i 7T> .

1
P(Xmod3=1) =y
1

P(Xmod3:2):3

Thus, in this specific illustrative exampl&(X mod 3 = j) — 1/3 for eachj = 0,1, 2,
while P(X mod 3 = j) — 1/3is anO(e~*"/?) oscillatory function of\. Convergence to
uniformity is very fast in this case.



There is nothing special about studyiiigmod 3; for any positive integek, the prob-
abilities P(X mod k = j) depict analogous convergence as well as oscillatory phenom
ena. Figure 4 shows the convergence to uniformityXofhod 5 in the Poisson case as
grows. We shall see in Section 4.3 that these phenomena asegaperal and not just

P{Po(1) mod 5 = j} P{Po(2) mod 5 =j}
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Figure 4: Distribution of Poisson residues moduio

confined to the Poisson or the binomial case.

In the previous examples the underlying distributions haitfimoments of all orders.
The next example is designed to show that existence of ma@nenbt necessary for the
phenomenon of convergence to uniformity for the distribatdf X mod £ to prevalil.

Example 2.3. (The zeta distribution and connections to Stieltjes carmts)a Suppose,
givenz > 1, the arithmetic random variabl€ has the mass function

1
C(z)n?

where((z) is the Riemann zeta function. When— 1, these distributionshift to the
right in the sense that the probability of any compact set of inegenverges to zero as
z — 1. The distribution has finite expectation only for> 2.

Now fix anyk > 2 and0 < j < k — 1. Forj = 0, the calculation below needs a very
small obvious modification. Then,

P(X =n)= (n=1,2,3,...), 3)

L o PR RS S o S 5 )
EP N ey e DIy S M

n=0 n=0

P(X mod k =j) =



where((z, ¢) denotes the Hurwitz zeta function > , —,¢ > 0,z > 1. Using the

(n+q)
known facts
lim(z —1)¢(2) =1 and liiq {C(z,q) — L} = —9(q),

z—1 z—1

wherey denotes the digamma function, we get, for any 2 and;j > 0,

1

< — (g +o(l) 1—(z2—1Da(qg)+o(z—1) 1

P(X mod k = j) = =2 = =,
omod k=) = T W o) FO+om) ok

asz — 1. The limitis 1/k for the casej = 0 as well for trivial reasons as in this case

P(X mod k =0) = k~*. The caseX mod 5 is illustrated in Figure 5.

P{Zeta(z) mod 5 =1} P{Zeta(z) mod 5 = j}
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Figure5: Convergence to the uniform of the distribution of zeta residues maédage | 1.

We can obtain an asymptotic expansion ftX mod k£ = j) via classical analysis.
Begin with the Laurent series expansions of the Riemanntaa#itirwitz zeta functions:

[e.9]

()= e ey ©
(o= g+ 3 TR e ©)

The termsy,, v,(q) in these series expansions are the celebr8tegdtjes constants~or
example,y, = C'is Euler’s constant, andgy(¢) = —(q) where, once agaiw is the
digamma function. The first few Stieltjes constamtsare shown to four decimal places
in Table 1, as also values of,(j/5) for the case: = 5 [for more extensive tables see
Finch (2003) and Musser (2011), for example].

Combining (4), (5), and (6), and writing=* = e *lek = Le~(="Dlek 3 |ittle
algebra gives us a two term asymptotic expansion

P(X mod k=) =k~ [T+ {30(f) — 0 ~ log(k)} (= = 1) + { } og(k)”
+{% —() } (log(k) + ) + 7 = (%) }<Z —1)?+0((2 - 1)3)} (7

For the casé = 5, for instance, the coefficients needed to carry out (7) manebd out
from Table 1.



nl 0 1 2 3 4
Yo | 05772 —0.0728 —0.0097 0.0021 0.0023

%0 /5) | m(/5) | %(/5) | v3(/5) | 1i/5)
5.2890 | —8.0302 | 12.9407 | —20.8487 | 33.5483
2.5614 | —2.2528 | 2.1017 | —1.9268 | 1.7603
1.5406 | —0.8308 | 0.4456 | —0.2210 | 0.1120
0.9650 | —0.2982 | 0.0691 | —0.0094 | 0.0040

= W N .

Table 1. Some Stieltjes constants.

Example 2.4. (An example with exceptional structure: the geometric dhstion). Let
Y have the exponential distribution with meanand letX be its integer part. TheX
has the waiting time mass function

P(X =n) =w(n;1l —e /) = e A — o= (nFU/X — o=n/A(] _ =1/ (n>0),

that is to say,X ~ Geometri¢l — e~!/*) has the geometric distribution with parameter
p =1— e /A By direct summing we see now that

%0 1A 1) elh=i=1)/A
_ e 1/N — (e €
P(X mod k = j) —nE:Ow kn+7;1 ) = AT
olh—i—1)/A

= 1_|_61/)\+62//\_|_..._|_e(k*1)//\' (8)

It is apparent from (8) that, for any givenand \, P(X mod k£ = j) is monotone de-
creasing iry [see Figure 6]. This is not true, for example, in the Poissasec

P{Geometric(1-e ~"'%) mod 10 = j}
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Figure 6: Monotone behaviour with for the distribution of geometric residues modul



Certain monotonicities in are also visible; for instance, for a givéna simple differ-
entiation shows that, asincreasespP (X mod k£ = 0) is decreasing whil&(X mod k =
k —1) is increasing; non-monotone behaviour is possible forinegiate values of [see
Figure 7].

P{Geometric (1- ¢ ) mod 5 = }
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Figure 7: Convergence to the uniform of the distribution of geometric residues médulo

We can investigate the asymptoticshby a Taylor series expansion of the exponen-
tials in (8). By a simple calculation, one gets

ol k—2—1 kK —3k+246j(j+1—k )
P(X mod k =j) = z + 5 X + 12]{)\; ) +O0(\?).

Hence, except wheh is odd and; = % convergence to uniformity is at the slow rate
of § This is also in contrast to the Poisson case. In Figure 6 se@ sde illustrated the
significant practical deviation from uniformity for the dli¥ution of X mod 10 at the
large value of\ = 15.

Example 2.5. (A case of failure)There are fairly natural integer-valued random variables
for which the phenomenon of convergence to uniformity ofdrsribution of X mod k&
fails. On introspection, this is not surprising. But as a@i@rconcrete example, také to
be the square of a Poisson random varidableith mean). SinceX is even if, and only
if, Y is even, it follows that
.\ et —e A 1 1

—0) — oA AR W A T
P(Xmod2=0)=¢e ;(Qj)! —e ( 5 ) =5—5¢ " =
Likewise, P(X mod 2 = 1) of course also goes tb/2 asymptotically. However, con-
vergence to uniformity fails for the distribution &f mod 3. Since3n + 2 can never be

a perfect square for an integey we do not have convergence to uniformity in this case.
Indeed, in this case,

1

—3X/2 3

1
P(Xmod3:()):§+ e cos —— =

L
37

[SVIN
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2 2
P(Xmod3=1)= 3~ 56_3)‘/2 cos

P(X mod 3 =2) =0.

Basically, X mod & will converge in law toU? mod k whereU, denotes a variable uni-
formon{0,1,...,k — 1}; however, see Theorem 4.5 for a crisper description. Table 2
lists the limiting distributions ofX’ mod & for some specific values @f

J
klo 1 2 3 4 5 6 7 8 9
213 3
313 2 0
4135 20
515 5 00 3
0l 50035 5 5003

Table 2: Limiting distributions ofy2 mod k£ whenY is Poisson.

3 Exact Formulasfor Poisson and Other Standard Cases

We treat the important Poisson, binomial, and negativerhiabcases in detail in this
section. It turns out that in each of these important specisés, we can write closed form
formulas forP(X mod k = j) for every fixed parameter value of the distribution, and for
every fixedk and;j. These exact formulas are in terms of hypergeometric fansti These
exact formulations lend themselves to a variety of direopfs of asymptotic uniformity
and we explore some of the ramifications. These proofs bririggome special features
and special connections that are not present in generaltaMesth the Poisson case.

3.1 Exact and Asymptotic Distributions of Poisson mod &

Let X ~ Poissoii\). We prove, using a few different methods, that the distrdoubf
X mod k converges weakly to the discrete uniform distribution omget{0,1,--- | k —
1}. Each proof has its own virtue, each making a connection tp d#ferent fields of
mathematics: the first proof exhibits a Tauberian link viaeaact formula for the prob-
abilities; the second proof exposes a Fourier connectiaramiidentity for characteristic
functions; and the third proof exploits a Markov chain emtied. The explicit closed



form formulas that we provide for the distribution &f mod & are of independent inter-
est.

Theorem 3.1. Let X ~ PoissoriA) and, in the usual notation, letF)_; denote the
generalized hypergeometric functigh, with parametery = 0 andg = k£ — 1. Then,
for each pair of integerg and k satisfyingk > 2 and0 < j < k£ — 1, one has the exact
formula

p;(A) := P(X mod k = j)
e AN j+1 j+2 E—1 k+1 j+Ek N
]' 0 kl( E Ok A Tk 7kk> ()

Proof. For the given choices of, £, and), a little algebraic massaging shows that

o0 kr+j —)\j k
W= A A {1+.k SELERL -
(kr 4+ j)! ! j+1 j+2  j+k Kk
A\2k
H,’f Lk kK k kG +]
j+1 j+k+1 j+2 j+k+2 j+k j+2k 2!

and we may simply identify the expression in square braakethe right with the hyper-
geometric function F,_, appearing in (9). n

For special values of, the exact formula (9) simplifies; here is a record of it.

Corollary 3.1. Let X ~ Poissori)). Then:

“Acosh A ifj =0,

P(X mod 2 =j) = _
e Asinh A\ if j = 1;
(%—l—ge*w‘ﬂcos %g) if j =0,
P(Xmod3=j)=qL42e32gin(28 1) jf j =1,
S-den(g) =2

(
— X cos Afcosh A Y
e~heosdicoh) if j ),
—Asin A+sinh A Y
B S— if ] = 1,
— A cosh A—cos A Y
e - 5 if ] = 2,

e
P(X mod 4 =j) =4

—Asinh A—sin A
e -
\ 2

Theorem 3.2. Foranyk and0 < j < k — 1, we haveP(X mod k = j) — 1/k as
A — 00.

10



Proof I First, the Tauberian approach. For this we show hah) converges in mean
under a suitably chosen sequence of weight functigid), i.e., [° p;(A)g.(A) dX —
1/k whenu — oo. To demonstrate that convergence in mean in this settingrwi¢ed
imply thatp;(\) — 1/k when\ — oo, we appeal to the following Tauberian theorem
[Hardy (1956, Theorem 221, p. 286)]; we state it as a lemma.

Lemma 3.1. Supposef is bounded and slowly oscillating ab, and that the Fourier
transform ofg has no real zeroes. Suppoge (0 — t)f(t)dt — | asf — oco. Then
f(z) — lasz — oc.

In order to use Lemma 3.1, we lgtt) = e~fe=¢ ", f(t) = p;(e') wherep,(-) is the
function in (9), and = log p with 1+ > 0. Then, by a change of variable,

/_OO g(0 =) f(t)dt = /OO el pi(e!) dt = /OO le—%pj()\) d\

00 —00 0 1%
1 [~ . _ j+1 j+2 k—1 k+1 j+k A

= — [ NeAwtO/mp, L ) dA
Mj! o € 04 k—1 L ) L 3 ) L y L ) 9 L ’kk

The integral on the right, curiously, simplifies to an examthi and, after simplification,
we obtain the formula

> W+ 1)F71
/ a0t ="TEE (10)
Note that for the right-hand side of (10) to tendltok as; — oo it is necessary and
sufficient that) = log 1 — oc.

Now observe tha(t) is the density of the standard Gumbel distribution whichis i
finitely divisible. Hence, its Fourier transforoannot have any real zeroed/ith this, the
only thing left to verify is that the functiorf(¢) is slowly oscillating, and then Lemma 3.1
applies and we have our desired regijlt) — 1/k asz — oo, which meang;(\) — 1/k
as\ — oo.

Now, a sufficient condition foif to be slowly oscillating is thaf’(t) = O(1) [see
Hardy (1956, p. 287)]. But, sincé(t) = p;(e’), we havef’'(t) = e'pj(e'), and so,
we need to show thatp(\) = O(1). Now, directly from the definition of;()), by
term-by-term differentiation of the absolutely convergpawer series, we obtain

') — —A)\j o0 )\kr . —A)\j—l e )\kr —A)\j e k,r)\krfl
PN = —e Z(kr)! +e Z(kr)! e z_; (er)!

r=0 r=0
s s et S =
pi(A) + )\p](/\)—l—e A Z (kr)!

r=1

11



r=0
LNk 1
o Ayji—1
Je [ZE (kr + j)! J']
R AV j—1 . Ayj—1
N+ L =Y Ty Y
After cancellations on the right-hand side, we hence oliterrather remarkable identity
Pi(A) = pja(A) = pi(N) (11)

valid formally for1 < j < k£ — 1. We may extend the validity of (11) tb= 0 as well
by interpreting subscripts moduloso that0 — 1 = k& — 1 (mod k): thus, forj = 0, the
corresponding identity is

]96(/\) = pr—1(A) — po(N). (12)
We will see shortly that we may interpret (11,12) from a Markmocess standpoint.
From (11,12), for any given, k, one gets thap/(\) = O(e~") for some suitable =
ik > 0. Hence\pj(A) = o(1) asA — oo, which means that it is alsO(1). Thus,
the functionf(¢) = ¢’ p;(e) is slowly oscillating abo. This complete$roof 1of Theo-
rem 3.2. [l

Proof 2 This is an efficient Fourier analytic proof of the result winihas the advantage of
applying more generally but which, in a sense, may lackle it mathematical intuition.
This approach should be compared to the material on mome&sdtion 4.5.

Letyx(t) = E[¢X] be the characteristic function &f. By inverting the transform,
we obtain the Fourier identity

1 27r 1 1% 2y
J— _1277]7“/k I - —i2mjr/k 1
kZ_; () =5 kZ_: w(F) @

which applies in general. In our Poisson cagg(t) = M1 and so the identity (13)
specializes to

k—
1 1 - 2 2
= -+ - E —i2mjr/k {e)‘{cos(%r/k)l} {COS ()\ sin %) + ¢sin ()\ sin %) H )

(14)
Now, for eachr betweenl andk — 1, we havecos(27r)/k < 1, and hence each of the
terms in the sum on the right in (14) tendsitas\ — oc. It follows that P(X mod k =
j) — 1/kas\ — oo. O

W

Proof 3 This is also a short proof using a Markov chain convergengeraent. Fix
k > 2. Writing ¢ for time, let N (¢), t > 0, be a Poisson process with a constant rate equal

12



to 1, and letX (t) = N(t) mod k fort > 0. ThenX (¢) is a continuous time Markov chain
on the state spacd), 1,--- ,k — 1}. Using the same notation as in Ross (1995, p. 251),
the embedded discrete time chain has the transition priitiegoi

1 ifi=0,1,...,k—2andj =7+ 1,

Py = .
1 ifi=k—1andj=0.

Furthermore, the departure ratescorresponding to thé different states are each equal
to 1. Hence a unique solution of the system of equations- ) . m; P, ; satisfying the
constrainty . m; = 1is ; = 1/k. Now, the limiting probabilities are characterized by

| 7 /v 1
p 1= fim Bij(t) = ﬁ K

which is the desired result. O

We remark that the identities (11,12) that we derived abovenffirst principles hap-
pen to be exactly the Kolmogorov forward equations for treepssX (¢) [see Ross (1995,
pp. 246—250), or Feller (1971, p. 328)].

3.2 Nonuniformity when k£ — oo with A

If X ~ Poissori)), then the distribution ofX mod k£ converges weakly to the discrete
uniform distribution on the s€0, 1, . . ., k— 1} for every fixedk when\ — co. However,
this is not necessarily true, whéngrows with A and also goes tec. Depending on
the rate of growth okt as\ — oo, various types of limiting distributions are possible
with an appropriate centering and scalingXfmod k. For example, it = A, then the
distribution of X mod k is approximated by a mixture of two half-normal distriburso
one centered at and the other centered at zero. On the other hand, ¥ ), then
X mod k will have an approximately normal distribution with a sika centeringu (k)
and scalingr (k). Figure 8 contains representative plots illustrating theous behaviours
that arise.

3.3 Poisson Powers and Connectionsto Number Theory

We showed by an example (Example 2.5) that convergence toromiy on the residue
class{0,1,...,k — 1} fails for the square of a Poisson. In this section we provide a
explicit general result for Poisson powers wheis a prime; ifk is not a prime, the result
is not explicit. We begin by introducing some notation.

Consider the equatiad” = j mod p. Herej = 1,2,...,p — 1 and we assumgto be
a prime. Letd be the greatest common divisorofindp — 1. Let g be any generator of

13
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Figure8: The change in the form of the limiting distribution in the case of the Poisson distnibu
of mean75 whenk runs through the value20, 45, 75, and 100.

the multiplicative quotient groug /pZ. Letn be the degree of; thus,¢” = j mod p.
Define the function

1 ifn=0,
N(j)=1<d ifn+#0andn = 0modd,
0 if n# 0mod d.

With this for preparation, here is our general result.

Theorem 3.3. Suppos&” ~ Poissori\) and letX = Y” forr > 2. Letk > 2 and,
modifying our earlier notation, let/;, denote a random variable distributed uniformly on
{0,1,...,k —1}. Then:

(a) For generalk, X mod k £ Uj mod k as\ — oo.
(b) If £ = pis prime thenP(X mod p = j) — N(j)/p asA — oo for each integer

0<j<p-1

14



The explicit formulation in part (b) follows from equatiod.g6), p. 100, in the proof
of Theorem 4.4.8 in Miller and Takloo-Bighash (2006).
We illustrate Theorem 3.3 with an example (also refer to ExaR.5).

Example 3.1. Letr = 5andk = p = 11. Thend = 5. A generator ofZ/11Z is
g = 2. Table 3 lists the degrees corresponding to each for the congruence™ =
j mod 11. By inspection of the elements of the table we see that 0 mod 5 for j €

jl1 23 45678 9 10
nf10 1 8249736 5

Table 3: 2™ = j mod 11.

{2,3,4,5,6,7,8,9}, whilen # 0 andn = 0 mod 5 for j € {1,10}. Thus, as\ — oo,
1/11 if j =0,
P(X =jmod11) — ¢ 5/11 if j € {1,10},
0 if j €{2,3,4,5,6,7,8,9}.
We see hence that the limit of the fifth power is drasticallpunaiform.

There is one interesting special case where the power waillithes asymptotically
uniform on the residue clag$, 1, ...,k — 1}. We present the result for the Poisson case
but it generalizes to suitable non-Poisson cases as well.

Theorem 3.4. Supposé&” ~ Poissori\) and letX = Y? wherep is a prime. LeD < j <
p—1. ThenP(X mod p = j) — 1/pasi — oc.

Proof. By Fermat’s little theorem, ip is a prime, then for any integerwe haven? = n
(mod p), whenceP(X mod p =j) = P(Y mod p=j) — 1/pby Theorem 3.2. [

Theorem 3.4 generalizes to certain polynomials of multipdésson variables, a spe-
cial case being convolutions of Poisson powers. Theorenb&@l&wv will generalize to
many non-Poisson cases.

Theorem 3.5. LetYy, ..., Y, be a sequence of independent random variables where
Y; ~ Poissort);), and supposeX; = Y wherep is a prime. Letf(yi,...,y,) be a
polynomial in(yi, . .., v.,) with integer coefficients. Suppose thatfox j < p — 1, we
have

P(f("1,...,Ym)modp=j) — 1/p (15)
asymptotically asnin; \; — oc. Then
foreachj =0,1,...,p— 1.
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Corollary 3.2. With notation as in Theorem 3.5, suppose only thdt | \; — co. Then

P(ZXZ» modp:j) —1/p

=1
foreach; =0,1,...,p— 1.

Proof. We use the following strong generalization of Fermat'dditheorem [see Blya
and Szego (1998, \ol. I, p. 148), or LeVeque (1996, p. 57} dny primep and any
polynomial f(y1, ..., y.) with integer coefficients|f(y1,--- ,ym)]? = f(W, - ,y%)
(mod p). The proof follows easily by using the hypothesis (15) oftieorem. O

Notice that in the specialization of the theorem to convohs, not all of the\; need
go tooc; it is enough if one of them does.

3.4 TheBinomial and the Negative Binomial Cases

The binomial and the negative binomial cases exhibit oneifsignt point of difference
with the Poisson case. In the Binonfialp) case convergence to uniformity occurs in
two separate asymptotic paradigms:pl} fixed andn — oo, and 2)p = p(n) — 0 and
np — oo. The second paradigm resembles the Poisson case. Likeéwibes NB(r, p)
case convergence to uniformity occurs in the two asympfmradigms, 1) is fixed and
r — oo, and 2)r is fixed andp — 0 (a necessary and sufficient condition is provided
in (17) below). A special case of the latter asymptotic payads seen in the case of the
geometric distribution withp — 0.

On the principle that it is always good to possess an exagtta, in the case of the
negative binomial we derive an explicit expression R{tX mod k = j) for each fixedr,
p, 7, k. We have not, however, been successful in obtaining a siciéan, exact formula
in the case of the binomial except for special values.of

Theorem 3.6. LetX ~ NB(r,p) and letg = 1 — p. Letk > 2 be any given integer. Then,
for0<j<k-1,

P(X mod k = j) = (" Np"(1 - p)
% ka_1<1"+j r4j+1 rjrk—1. j+1 j+2 k=1 k+1 k+j. (1 _p)k) (16)

k k VAR k 9 9 VAR k k 0 k

where the usual accommodations have to be made for the enslcaseand; = k£ — 1
where many of the terms in the argument of the hypergeoméstigbdition vanish.

We omit the proof as the derivation is similar to that of (9)or Bpecificr and k,
formula (16) simplifies. Here are a few specific cases as ebemnp
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Corollary 3.3. Let X,. ~ NB(r,p) and letg = 1 — p. Then:

J
a)P(leodk:j)zlqu 0<j<k—1).
—q
2 5 k(. _ 5 _
L Utk —j 1) .
b) P(X; mod k = j) = ( (1 — g¥)2 ) (0<j<k-1).
UH3e) if j— 0
. 3 ]_ ]
¢) P(Xymod 2 = j) = ¢ UH0
( P "
(U+7¢°+¢%) 45 7 —
Wrarey 117 =0
d) P(Xs mod 3 = j) = { Ja2e)jf j —q,
3¢°(2+4¢%) e .
\ (1q+q+q%)3 if j = 2.

~

(14+12¢*4+3¢%) ¢ -
rerirey 17=0,
q(3+12¢*+45) if j =1,

— 5 — ) (dat+e®+¢®)?
e) P(Xsmod 4 =j) = 2P0t o
(I+g+¢>+¢°)* J=%
20(EH5) i j =3,

\ (1+q+¢*+¢%)3
We now present the corresponding convergence theorem.

Theorem 3.7. Let X ~ NB(r,p). ThenP(X mod k = j) — 1/k for eachk > 2 and
0 < j <k —1if, and only if, for each real number € [—1,1),

p T
— 0. (17)
(\/(1 —qa)®>+¢*(1 — az))
Proof. The approach uses Fourier methods. FFix 6 < 27, and denote = cos . Bear
in mind thate < 1. SupposeX ~ NB(r,p) and denote its characteristic function by
¥x(t). With ¢ = 1 — p as before, note that

_(_r N
vxlt) = (1 - qe“) '
By the Fourier identity (13)P(X mod k = j) — 1/k for each fixedk and each) < j <

k if, and only if,
p T
1 — ge

But this condition may be rewritten in the form

— 0.

( )
O

which, in turn, is equivalent to the statement (17) to be show n
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In particular, (17) holds for each fixed> 1 if p — 0, or for each fixed if r — oc.

Theorem 3.8. Let X ~ Binomialn, p) and letg = 1—p. ThenP(X mod k = j) — 1/k
for eachk > 2 and each) < j < k — 1if, and only if, for each real number € [—1, 1),

((pa+q)* +p*(1 —a*)" — 0. (18)

The proof of (18) follows the same lines as that of (17) by ekjplg the fact that the
characteristic function of a Binomial, p) distribution is given by)x (1) = (1—p+pe®)™.
We omit the detalils.

4 General Theory and General Convergence Theorems

Having treated the important standard lattice distritngion Section 3, we now move on
to generalities. The purpose of this section is three-f(d):Obtain a general expression
for P(X mod k = j) for a more or less general lattice random varialileby using the
classic tool of the Euler-Maclaurin summation formula. ffoy a sequence of lattice ran-
dom variablesX,, having a convolution structure, draw an analogy to the fasndeyl
equidistribution theorem, and exploit this analogy to wiat nearly necessary and suffi-
cient condition for convergence of,, mod £ to uniformity. (c) Again, for a sequence of
lattice random variableX’,,, give a widely applicable sufficient condition for convenge

to uniformity by using the modal properties of the mass fiong of X,,.

Because of the technical nature of the proofs of all thesemgtheorems, we have
given these proofs in a separate appendix.

We start with a general theorem on the convergence of theldison of a sequence of
integer-valued random variablés, modk to the uniform distribution o040, 1, ..., k—1}
and provide an elementary proof in the spirit of Poiéamethod of arbitrary functions.
The conditions imposed are close to being necessary andienffand, if convergence
is all that is desired, this theorem will cover all the stadeases. For instance, it will
already explain the distributional convergence of vaeahileduced modulé in the ex-
amples of the previous section.

Our basic theorem provides a bound on the total variatiotadé® between the dis-
tribution of X mod % and the uniform distribution o0, 1,...,k — 1} for a given dis-
tribution for X. While the total variation bound suffices to deduce condgior the
convergence of moduli residues to the uniform, it is a ratilent instrument and leaves
open the question of how such distributions may be systeaibticonstructed. Nor does
the total variation bound provide sufficiently precise mhation about finer questions
such as the rate of convergence or the origins of oscillaptysgnomena. For these we
have to dig deeper.
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The first of these deeper questions may be partially answayeal variation on the
theme of Weyl's equidistribution theorem by a consideraid convolutional structures
arising out of random walks on the additive grotip. We shall see that such processes
characterize a large family of distributions for which thechli residues converge to the
uniform.

We follow this limit theorem by a characterization of a ratdéferent flavor by con-
necting the distribution oK mod & to absolutely continuous distributions via the Euler-
Maclaurin summation formula. When a tractable smooth irtlepon of a discrete dis-
tribution is available, a finer analysis now allows one to aoly inherit distributional
convergence for the modulo residues from a class of abdglevatinuous distributions,
but, by a consideration of the residual terms in the Euleclsiarin sum, explicate the
origins of the oscillation that was evidenced in the illasitre examples of Section 2.

4.1 First General Theorem and a Bound on the Total Variation Dis-
tance

Our basic result is a variation on the theme of H. Poiasaclassical analysis of roulette
in 1896 [see Poincar(1912, pp. 122—-130)]. The body of work emerging from Paig'sa
analysis, memorably called "the method of arbitrary fuocs” by Hopf, builds upon
the fundamental result that X is absolutely continuous anda real number then the
fractional part oftX converges in distribution to the uniform distribution orethnit
interval ast — oo. [For a rich tapestry of applications, see Engel (1992) ¢ Tdllowing
theorem is a discrete analogue. It asserts, roughly spgatkiat if the distribution of a
non-negative, integer-valued random variaklés “honest” in the sense that it is suitably
well spread out thenY mod k is approximately uniformly distributed for any. The
proof we give here exploits partitioning in the spirit of Roag’s approach [see Venkatesh
(2013, pp. 288-290), for instance].

A little notation streamlines the presentation. For &ny 2, let U*) denote a random
variable distributed uniformly 0oq0,1,...,k — 1}, and, for any non-negative integer-
valued random variablé&’, write X*) = X mod k. If U andV are random variables,
write

dTV(L(U),L(V)) = sgp\P(U €A —-PVe A)|

for the total variation distance between the lawd/oAndV. The supremum is over all
Borel setsiL(+) stands for distribution or law of the random variable in thgtement.

We recall that a mode of an arithmetic random variable is atyesat which its mass
function achieves a (local) maximum. We identify amaximalcollection of consecu-
tive integers all achieving the same (locally) maximum eafs an equivalence class of
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modes and select as representative any member of the chadgfiBition, any two equiv-
alence classes of modes must either coincide or be disjoistinct modes correspond to
representatives in different equivalence classes.

Theorem 4.1. Let X be an integer-valued random variable taking value$,in, 2, . ...
Suppose the mass functigit:) = P(X = i) of X hasm distinct modes and write
M = max; f(i). Thent dry(L(X®), L(UW)) < 2mM for everyk > 2.

Example 2.5 illustrates what can go wrong if the number of esod not finite. On
the other hand, if the number of modes is finite then with ariexpound in hand it is
easy to write down a general convergence theorem.

Corollary 4.1 (CONVERGENCE CRITERION. Let{X,} be a sequence of non-negative
integer-valued random variables. Suppose the mass fungtio) = P(X, = i) has
m,, distinct modes and attains a maximum valdg = max; f,, (). If m, M, — 0 then
drv(L(X), L(U®)) — 0 for eachk > 2.

The usual setting where the convergence theorem comes layogwhen the se-
quence{m,, } is bounded, the unimodal case being the most important ictipea In this
case the convergence criterion takes a very simple fdrinn,, } is bounded and/,, — 0
then dry(L(X\), L(U®)) — 0 for eachk > 2. Our convergence theorem yields a
quick and direct verification of the cases of convergencééneixamples of the previous
section without the necessity of a laborious case-by-caalysis (though finer behavior
will have to await a more careful analysis).

Example 4.1. (The binomial, revisited.) The Binomialn,p) distribution b,,(k;p) =
(1)p*(1 — p)~* is unimodal and attains its maximum valdé, at the point[np]. An
easy application of Stirling’s formula shows that

M, = bo([np)ip) ~ — e 0 (n— o)

2p(l — p)n

for every fixedp in the open unit intervad < p < 1. Thus, if X,, ~ Binomial(n, p) and

0 < p < 1, thendry (L(XP), L(UP)) — 0 asn — co. Notice that the conclusion that
M, — 0 is also obtainable from the local limit theorem because efdbnvolution struc-
ture of the binomial distribution. We will return to a moreretul study of the binomial
in Section 3.4.

Example4.2. (The Poisson distribution, revisitedThe Poissofm) distributionp(k;n) =
e "k"/k! (n > 0) is also unimodal and attains its maximum valdg at the point: = n.
It follows that

M, = p(n;n) ~ —0  (n—o00),

1
V2T
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and so, ifX,, ~ Poissoftn), thendry (L (X)), L(U®))) — 0. Once again, we may also
conclude thatV/,, — 0 from thelocal limit theorem as the Poisson also has a cotenlu
structure. We will study the Poisson case in detail in Sac3io

Example 4.3. (The zeta distribution, revisited].he zeta distribution
1
n>1
w2
of Example 2.3 is unimodal and achieves its maximum valug/qfz) atn = 1. As

((z) — o0 asz — 1, it follows that, if X, ~ f(-;2), thenX ¥ converges in distribution
to the uniform ag | 1.

Fn:z) =

Example 4.4. (The geometric distribution, revisitedSupposeX, is concentrated on the
non-negative integers with the geometric distributionrwiarametet — e~/*. Its mass
functionw(j; 1 —e~'/*) = e77/*(1 —e~'/*) is unimodal and achieves its maximum value
of w(0;1 — e™'/*) = 1 — e~'/* at the origin. It follows thatiry (£ (X{7), L(U®)) =0
as\ — oo.

Example 4.5. (The negative binomial distributionfix any positive integer, and0 <
p < 1. Write ¢ = 1 — p. The negative binomial distribution

. —n
Wn\];P) = .
Gin =
is unimodal and achieves its maximum valueg , at the pointj = [(n—1)g/p]. An easy
application of Stirling’s formula (or the local limit theem) shows that

Moy = maxun(jip) = wn([(n = Da/plip) ~ = (1= )

)(—qy‘pn G2 0)

Thus, if X,,,, ~ w,(-; p), thendry (L(X15), L(U®)) — 0 asn — oo.
Another asymptotic convergence is obtained by allowing0. The asymptotic esti-
mates are unchanged anddg (L (X.\9), L(U®)) — 0 also wherp — 0.

The simplest examples of multimode distributions ariseasuhixtures of unimodal
(or other multimodal) distributions. The Poisson case ples a typical illustrative ex-
ample.

Example 4.6. Poisson mixturedn the notation of Example 4.2, write

p(izA)=e"—  (120)

for the Poisson distribution with mean Then the mixture distribution
F@) = ampliz;) (i >0)
j=1
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Figure 9: The Poisson mixture distributioffi(i) = 0.2p(i;5) + 0.3p(é;15) + 0.2p(4;30) +
0.3p(i; 50) has four modes.

(where then; are positive and sum to) has up ton modes as illusrated in Figure 9. If
X is a random variable distributed accordingftg) then, by Theorem 4.1,

drv (L(XW), L(UR)) < 2kmM

where we may bound

m m 1
M = maxf Z maxp i; A\j) Z \/ﬂ e \/_
j=1 j=1 J

The quantityC' on the right represents an absolute positive constant whehmay take

to bee'/!3. The explicit bound on the right yields a simple convergeagterion in
terms of the Poisson parameters. Supppsg,n > 1} is a positive integer sequence
and{\;,,1 < j < m,,n > 1} is a doubly indexed sequence of positive real values
such thatm, / (mini<j<mm, \/Aj.) — 0. Let{X,,n > 1} be a sequence of random
variables where, for each, X,, has a Poisson mixture distribution of the forfy(-) =
S agap( Ay) (Whereay,, > 0andy . a;, = 1). Thendry (L(X17), L(U®)) —

0 for eachk > 2.

The convergence theorem extends effortlessly to settifgevthe modulus is ran-
dom. Some notation first: to each distribution= (o, k > 1) with support in the
positive integers associate the distributify; o) = >_,.,,, ax/k with support in the
non-negative integers > 0.

Theorem 4.2. SupposeX is a lattice variable whose distribution = (ay, k£ > 1) has
support in the positive integers. X is as in Theorem 4.1 andl is independent ok then
sup; | P(X®) = j) — h(j; )| < 4mM.
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Corollary 4.2. If the sequencéX,, } is as in Corollary 4.1 andy is independent of X, }
thensupj‘P(szK) = j) — h(j;a)| — 0 asn — oo providedm,, M, — 0.

4.2 A Variation on Weyl’s Equidistribution Theorem and Automatic
Constructions

The convergence theorem of the previous section identtiiestaral features (in terms of
modes) of arithmetic distributions for which there is distitional convergence for moduli
residues. If a criticism were to be levied it could be that dngcovery of distributions
satisfying the convergence theorem has been carried outra@t and error basis and that
the examples that we have encountered so far are mostlyaheast lattice distributions.
It would be useful to bolster our understandingdygtematiconstructions. Fortunately, a
large (but, as we shall see, not exhaustive) family of digtrons is available to us through
the classical theory. First, we need some notation.

As a preliminary, we recall the cyclic convolution operator the additive groug.,
with group operation addition modula If F andG are distributions with support i#;,
the cyclic convolution off” andG, denotedF' x G, is the distribution with mass function

FxG{ty =) G{t—s}F{s}  (te€Z)
s€Zy,
where sums and differences of elements in the additive giQupre to be interpreted
modulo k. The operation is commutative and associative and so tisen® iharm in
writing F} x F5 x - - - x F,, for a repeated convolution.

SupposeX is a random variable whose distributiéhhas support contained in the set
of non-negative integers. Writ§ *) = X mod k, let F*) be the distribution ofX*),
and write V) for that subset of0,1,...,k — 1} on which F*) is concentrated, i.e.,
V*) is the support ofF*), In the algebraic viewpoint we are working on the additive
groupbbZ;,. Write V™ for the subgroup 0%, generated by *) and letF'*) denote the
atomic distribution concentrated 4" which places equal mass on each of the elements
of V.M,

We shall henceforth restrict attention to distributioAsfor which VV(*) contains the
point0 as otherwise fairly trivial examples can be constructed dloanot converge.

Let{X,,n > 1} be a sequence of random variables obtained by independeplisg
from F. Form the partial sums,, = X; + --- + X,,. EachsS,, has distributiont’,,, =
F' % ---x F obtained as the-fold convolution of ¥ with itself. Write S,(Lk) =5, mod k
and letF¥) denote its distribution. TheR " is concentrated on some subsgt’ of the
set{0,1,...,k — 1}. As Vl(k) = V® contains the origin, it is clear that the sequence
{Vn(k),n > 1} increases to a limit sdt), v, which we may, in fact, identify with the
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subgroupv*(k) generated by (). As we are working on the finite group, it is clear
that V" must actually coincide with,*) for all sufficiently largen.
We are now ready for the following variation on a classicalie

Theorem 4.3. SupposeF'*) is concentrated o’ *) and suppose also that € V%),
Then {F*(,'?,n > 1} converges weakly to the uniform atomic distributigff” which
places equal mass on each of the elements of the sub@iﬁbgenerated by (%),

If we identify the half-closed unit interval, 1) with the circleT of unit length then,
by wrapping the real line arourid (in one or the other orientation) we may identify points
r,r+t1,z+2,... and so on. In this viewpoint the sequence of (hormajipadial sums,
{15 n > 1} represents arandom walk on the vertiogs/k, ..., (k—1)/k of aregular
polygon embedded ifi. Theorem 4.3 is hence a statement about the weak convergence
of a particular sequence of distributions concentrated mgalarly spaced set of points
on the circleT.

The conditions are reminiscent of Weyl's equidistributitveorem. In that setting
we begin with an atomic distributior; = F placing all its mass at a single irrational
point z in T; we now construct a sequence of distributipAs, n > 1} with F,, placing
equal mass on the points 2z, ..., nx in T. The analysis now proceeds in exactly
the same fashion with the conclusion now th#t,,» > 1} converges weakly to the
uniform distribution onT or, in the language of analysis, the sequefiee,n > 1} is
equidistributed orf.

Corollary 4.3. For a givenk > 2, if F(®) places positive mass on bothand 1, or
if (®) places positive mass oh s, andt wheres and t are relatively prime, then
dry(L(SP), L(UR)) — 0asn — oo.

Corollary 4.4. If F places positive mass drand1 thenlim,, dr,(£(SS), L(U®)) =0
for everyk > 2.

We have stated Theorem 4.3 for lattice distributions on ithee fo keep the notation
and presentation unencumbered. But a little introspedfwows that the proof carries
through essentiallyn toto in two and more dimensions. With proper notation, we can
present the multidimensional result in the same form as enahe dimensional case.
Supposel > 1 is a positive integer and = (kq, . .., k;) a vector of moduli. We work in
(Z*)? and identify the additive grouf, = Zy, x -+ X Zg, = {0,1,... k; — 1} x - -+ x
{0,1,...,k;s—1} to be the lattice points in &dimensional rectangle with vector modulo
k operations interpreted component-wise. We suppose nawitha (Xi,..., X;,) is a
lattice vector whose distributiof’ has support in(Z*)?. Reusing notation, lek *) =
X mod k denote the vector residue modulpand write 7 for its distribution and/ %)
for the subset oz, on which F*) is concentrated. As before, we Wrifé(k) for the
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subgroup ofZ,, generated by/* and F™ for the vector atomic distribution placing
equal mass at each of the pointsi/[ﬁ).

Theorem 4.4, Theorem 4.3 holds in d-dimensional setting where = (k,...,kq)
represents any vector of moduli.

Corollary 4.5. For a given vector of moduli = (ki, ..., kq), Suppose:'*) places pos-
itive mass at the origin as well as on thkelattice points(iy,...,i;) neighboring the
origin where precisely one of the indicéstakes valuel with all the others being.
Let 5SS = S, mod k represent the modulo residues of the corresponding veatmtom
walk and letU®*) represent a random vector with the uniform distributionZn Then
dTV(L(Sy(Lk)), L(UM)) — 0asn — oo.

The adaptation of the proofs in one dimension requires ngthinore than to strike
out the references to a scalar modulusind replace them by a vector modulkis=
(k1,...,kq), and replace references tardZ, = k in the scalar case byard Z, =
ki --- kg4 in the vector case.

Theorems 4.3 and 4.4 show how distributional convergenaaarfulo residues can
arise from a wide range of basic distributions via convalng. Many of the standard
distributions fall under its sway: the Binom{al, p) distribution arises out of repeated
convolutions of the Bernoullp) distribution; the Poisson distribution is closed under
convolutions and hence the Poisgendistribution is obtained by repeated convolutions
of the Poissofil) distribution; the Negative Binomiat, p) distribution arises out of re-
peated convolutions of the Geometyit distribution. As the Bernoul(p), Poissof(l),
and Geometrip) distributions all put mass at bothand1, it follows as a special case
that there is distributional convergence for the modulad@ss for the binomial, Poisson,
and negative binomial cases [see Examples 2.1, 2.2, 4.5{et4y, if we takel” to be the
distribution of twice a Poisson random variable, tiiédoes not put any masshand the
modulo residues do not converge to the uniform. We beliesé Theorem 4.3 explains
a critical feature of the problem: basically long convabuis made out of a distribution
putting mass at both and1 will exhibit the convergence to uniformity property.

While the theorem provides a concrete construction of a l&agely of settings for
which there is distributional convergence for modulo ress it is not exhaustive. The
zeta and geometric distributions provide examples of ibistions for which modulo
residues converge weakly btitese distributions do not arise out of convolutidase
Examples 2.3, 2.4]. The convergence of moduli residues thighparametep for the
negative binomial distribution going t[Example 4.5] illustrates another setting where
the convolutional character of the distribution is incitin

Theorem 4.3 provides a usefabnstructivecounterpart to thetructural characteri-
zation of Theorem 4.1. Both, however, leave finer questionthe rate of convergence
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open. We turn to this next.

4.3 Connection tothe Euler-Maclaurin Formula

If the sequence of mass functiodd,,,n > 1}, possesses a sufficiently smooth, tractable
interpolation then Euler-Maclaurin summation provideséegant approach to getting at
convergence rates.

Suppose that, for each, the mass functiory,, (i) with support in the non-negative
integers{0, 1,2, ... } has been extended via a smooth interpolation to a fungijon) on
the half-line[0, c0). By “smooth” we mean that the functiofy extended in this fashion
possesses sufficiently many continuous derivativeglono). Now fix integersk > 2,
0<j<k-—1,¢g>0,andm > 0. Let also, as usual3,, s > 2, denote théBernoulli
numbers these are non-zero only for even valuesB, = 1/6, By = —1/30, etc. If
fn is 2m times continuously differentiable off), o), then, by a change of variable of
integration in the Euler-Maclaurin formula [see, e.g., @Y1997, pp. 279-286)],

Stk +3) = [k )bt 55.0)+ k)

m—1 kas_lBQs (25-1) . (25—1)( ;
2 W[fn (kq+37) — fa (])] + Ry(m)
1 [kats 1[I 1
- E/o fulz) do — E/o fal@) dz + S[fa(3) + fulka + 5)]
m—1

k25—1823
_l_ JE———

821 (2s)!
where, writing); for total variation over an interval, the remainder terni,(m) may

be bounded absolutely Bz, (m)| < C(k,m)Vjrq(fi" ") for an absolute positive
constantC'(k, m) determined solely by andm. Lettingq — oo we obtain

(£ D (kg + ) — £27D(5)] + Ry(m).

L 11 1. .

P(X, mod k = j) = an(k:l +j)= . E/ fu(z) dx + §fn<.])
1=0 0

- m—1 k251 By,

G ) B (19)

where the remainder may be bounded absolutelyiy| < C(k,m) Vg )( Fm=)y,

The expansion is valid asymptotically providgdand its firs2m — 3 derivatives vanish
asz — oo and fi°" " is of bounded variation on the half-line, o). When such
a tractable smooth interpolation exists, (19) provides fectve practical method for

numerical approximation aP(X, mod k = j).
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Example 4.7. Interpolating the geometric distributionConsider the failure geometric
distribution with mass functio®®(X = n) = pq" with ¢ = 1 — p. Direct summation
gives the exact expression

g’ :1+(1 j+%>p+k2—6jk+6j2—1 2
k

2 k

P(Xmodk=4) =1 % ok P+ O(p°).

(20)
This is the same as the expression obtained in Example 2Mpwit 1 — e~ %/* and \
serving in the role of the asymptotic parameter.
The natural interpolation of the geometric distributiondscourse.f,,(z) = pg® with
support in[0, co). Applying (19) withm = 2 hence gives

P(X mod k =j) =

p (7 .. Pk
E/ q d$+7_ﬁpq]10gQ+R2(p)
0

pd =1 pd k

Y i S s Sy |

Flozg + o T P 0g ¢+ Ra(p)
1 k2 — 65k + 652 s
e . (21
(2 k)er ok p”+0(p°) + Ra(p).  (21)

el =S N e

A comparison of (20,21) shows that the coefficientg ahdp? are slightly different. This
is because the remainder teffg(p) has not been exactly written out; when it is, the two
asymptotic expansions will coincide.

Itis useful to compare these findings with those of Examplésd 2.2. Unlike those
cases where convergence to the limiting value is exporniiget, in the geometric case,
convergence occurs only at a polynomial rate as was seenample 2.4 and as (20,21)
again aver.

Example 4.8. Interpolating the zeta distributionThe zeta distribution of Example 2.3
admits the smooth interpolation

:E—Z

¢(2)

with parameter > 1. Restricted to the positive integers this recovers the distiaibu-
tion (3). Then

fl) = fla;2) = (x> 1)

f(2 1)( ) ( 1) ( 5 1)j—z—25+1 [(2 1)' O( 1)} 6—(2—1)log(j)
)= —2(241) (2425 1)———=—|(2s -+ 02— 1) | - ————

/ () ()
and it is easy to verify thaP(X mod k = j) = 1 +O(z—1) asz | 1though interestingly,
the convergence is very slow.

For a given lattice distribution, the utility of the apprdedepends upon our ability to
find a natural, smooth interpolation as in these exampleseverse, we may also start

27



with a suitably smooth density on the half-lifie co) and, by considering its restriction
to the non-negative integers, inherit a lattice distribatfor which the moduli residues
converge in distribution. (A normalizing constant may agp@& general but it is easily
handled.) Such settings are relevant in applications itovepiantization.

Where available, the Euler-Maclaurin expansion (19) alsegus useful information
about when convergence to the limiting vallyg should be exponentially fast. Suppose
the lattice-valued random variablé, has a convolution formX,, =Y, + Yo +--- + Y},
where theY; are i.i.d. have a moment generating function in a neighbmahaf zero.
Then, by large deviation theory for partial sums [see, a/gradhan (1984)], the term
fOJ fu(z)dx = P(X, < j)would be exponentially small. By large deviation theory for
local limit theorems [c.f. Richter (1957), Chaganty and S8etman (1985)], the term
fn(j) would also be exponentially small. Thus, if the oscillatiaof the sequence of
functionsf,, die at exponential rates, then by (19),X,, mod k = j)—% would converge
to zero at a suitable exponential rate. In the absence of @wdnvolution structure it
would be difficult to assert anything general about expaaéintfast convergence.

4.4 Writing Out the Oscillatory Term

Expression (19) also explains the reason for the oscillégtia? (X, mod k = j) that we
evidenced in some of the illustrative examples in SectioffitZe remainder term in (19)
has the precise form

o= [ P

where Bs,, is the 2mth Bernoulli number and3,,,(t) is the Bernoulli polynomial of
degre€m. Using the Fourier expansion

o0

_1\ym+1 m)! s Qi
Ban(t) = A=y @2

j=1
together with the formula for even-ordered Bernoulli numsbe

2(_1()2:;21fn2m)!<(2m) _ (=1 (2m)! > 1 3)

B m — N 5
2 (27)2m j2m

J=1

[see, e.g., Olver (1997, pp. 283-285), for (22,23)], theaieer may be written explicitly
in the form

/OOO [1 — cos(2mj(x — |]))] 2 (2) de, (24)
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provided f,(fm) is absolutely integrable off), co) so that the integration can be performed
term by term. The expression (24) for the remainder givescataeation for the presence
of an oscillatory term inP(X,, mod k = 7).

By combining the arguments leading to (19) and (24), we aolite following general
theorem.

Theorem 4.5. Let X be an integer-valued random variable taking valOes, 2, - - - with
mass function?(X = j) = f(j), wheref: [0,00) — [0, 00) is a density function satis-
fying the following properties:

(@) f is ultimately decreasing;

(b) There is an even integei/ such thatf is 2M times continuously differentiable on
(0, 00);

(€) limy_oo f(x) = limy_oo f@*V(z) =0 foreverys =1,2,--- , M — 1;
(d) f®M) is absolutely integrable ofD, cc).

Fix any integerk > 2 and0 < j < k — 1. Then,

M-1 9. 1
k=" Bog

P(Xmodk:—j—%— /f ) dx + = f() Z 25) s SETV )

2(_1)M+1 oo 1

(27)2M — j2M

+

/ [1 — cos(2mj(z — ij))}f@M)(x) dx. (25)
0
We may now simply read out the conditions for distributiooahvergence of modulo

residues.

Corollary 4.6. Suppose that the non-negative integer-valued random bigri&, has a
mass function for which there exists a smo@in,-times differentiable interpolatiorf,,
satisfying the following asymptotic properties:

(@) Forany fixed, [\ f.(z)dz — 0and alsofs” " (t) — 0for0 <1 <m — 1.
(B) Vig.oo) (/") — 0.
Thendry (L(X7), L(U®)) — 0 for eachk > 2.

Theorem 4.5 gives a purely analytical explanation for whyidatrandom variables
that have a flat and well-behaved mass function are approsinainiform when mea-
sured mod: for any k; the approximate uniformity is transparent from the remeimtion
on the right in(25) as every term other thab would be small.
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We close this subsection with the observation that it is iptes$o use the mulivariate
version of the Euler-Maclaurin summation formula [see Bdatarya and Rao (2010,
p. 296)] to obtain a version of Theorem 4.5 in two or more disiens much in the same
way as Theorem 4.4 expanded the purview of Theorem 4.3. Theigon a rapidly
burgeoning notational complexity and we eschew the details

45 TheMoments

Let X be a general non-negative integer-valued random variaidelet k. > 2 be a
fixed integer. The formula in (25) for the mass functionXfmod k& does not lead to
any worthwhile general formula for the moments ®fmod k. Although neat general
formulas seem quite difficult, a Fourier approach, instdaadirect attack by using equa-
tion (25), does help in writing a general formula for the martse and this formula leads
to some simplification of the low order moments. Here is theegal Fourier formula.
We first need to lay out some notation.

We denote
X *) = X mod k;
pi(k) = PX® =j);
pa(k) = EX®,
¥x(t) = The characteristic function of;
Y. x(t) = The Fourier cosine transform o&f;
s x(t) = The Fourier sine transform of;
2 - 2_7];7”
By, = kth Bernoulli number

an,m(t> = Z;ﬂ:lj”cos(tj);
Bum(t) = >0, " sin(tj).

In particular, we have)x (z,) = ¥ x(z.) + s x(2,) while we may also identify

k—1

Z]‘n(e—izr)j = an,k—l(zr) - iﬁn,k—l(zr)~

i=1

ldentifying z, = 277 /k in the Fourier identity (13), we obtain

|kl k—1 k-1 . k-1 k-1
:E[ J"t+ Ux (2,)7"(e7) }:E[Zj +Z¢X Zr ;]n e ') ]

(26)
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In view of the identity

n

—1)7 B.prti—i
ZJ n+1z( >(j>”p |

we may combine (13,26), to get the following general result.

Theorem 4.6.

tn (k) = Hni DI (“. 1) B; (k — 1)+~

=0 J

+ i{an,k—l(zr)¢c,X(zr) + ﬁn,k_]_(zr)@/J&X (Zr)} .

This is a general moment formula valid for arbitrasyand & and generalX. No
further simplification seems possible, except in specifsesaFor example, i = 1, the
functionsa,, 1 andg, x—1 simplify and we obtain the following corollary.

Corollary 4.7. For generalX andk, the first moment ok mod k equals

(2) L (k1) cos(her)—h cos((h—1)2)) o x (21)

) = |1

" <<k ~ Dpsin(hz) ~ ksin(k = D)2) () . @7

Here is an example that uses Corollary 4.7.

Example 4.9. SupposeX ~ Poissori)). Consider the case = 3; thus, X mod k takes
the valued), 1, 2. We would expect its mean to be c;oselttor large \; how close? For
example:

How large a\ is needed to makg — E(X mod 3)| < €?

In the Poisson case, the Fourier cosine and the Fourier singforms can be written in
closed form:

waX(t) _ %(6)\(6“_1) + e)x(e—it_l)); ’ws,X(t) _ eA(cost—l) SiIl(/\ sin t)

The values of;, are 2w, 3w, andcos(kz, ), cos((k — 1)z,),sin(kz,),sin((k — 1)z,), and
csc(% ) are easily found in closed form. After some intermediatewalions, formula (27)

leads to ( )
M3
)\\/g SlIl
E(X mod 3) =1 — e 3?2 VI A2/ 28
(X mod 3) e cos( 5 ) 75 (28)
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So,|1 — E(X mod 3)| = O(e~3¥2). Going further, the functiomos(Tf) sin(*¢*
bounded in absolute value By Hence, using (28), we see that— E(X mod 3)| < ¢
for A > log e~2/3,

Theorem 4.6 also results in this following general appration bound on the mo-
ments ofX mod k.

Theorem 4.7. Let U®) denote a uniform random variable on the §6t1,...,k — 1}
and letv, (k) = E[(U®)"]. Then, for any: andn,
Mn(k) ‘
su -1 <(k-1 su t)|.
i < ED, e o)

us
<<

The main appeal of Theorem 4.7 is that it will often provideesgonential conver-
gence result for the moments.
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5 Appendix

Proof of Theorem 4:1Select anyt > 2. We will prove a little more than advertised and
show indeed that

|P(X® =j) -t <4mM  (0<j<k-1). (29)
The claimed result follows from the observation that

1
k) — ) — =
P(X ]) 7l

re (B(X9), £U9)) = £

Fori > 0, setQ); = {ik,ik +1,...,(i + 1)k — 1}. Fixany0 < 7 < k — 1. Each
(2; then contains a unique element of the formak + j. Thent;; = j (mod k), and
the collectiont; = {t,;,7 > 0} forms an equivalence class of elements all congruet to
modulok. We then see that

P(x® = ) —%:P(XeEj)—%:Zf(tij)—%Zf(t)
:Z%Zf(tij)_%zzf(t)

as, on the one handard ©; = k for eachi, and, on the other, the collectidf;,: > 0}
partitionsZ*. By consolidating the sums we hence obtain

>4 St - £0)| < X § Tlsw) - 5] @0

7 teQ); 7 teQ;

1
) — 5y — =] =
P(X® = j) k‘

We now proceed by partitioning to exploit the modal naturehaf distribution. AsX
hasm distinct (equivalence classes of) modes we may identifynareasing sequence
—00 =My <& <M <& <M< < Ny < &n < nm = oo such that, for each,
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f(t) is non-decreasing foy;_; <t < ¢; and non-increasing faf; <t < n,. Write I for
the set of indices for which §2; contains one or more of the extremum poigisn, &,
ey M1, &m- Itis clear thatl < card(/) < 2m — 1.
Split the sum over on the right in (30) and writ_, = > ., +> .., We may
accordingly bound

P(XW =)~ 4 <3+ 3 (31)
where}"’ accumulates the terms forc 7 and)_"” accumulates the remaining terms for
i & 1.

Simple bounds suffice for the contribution from the tefnas . As|f(s)—f(t)| < M
for all integerss andt, it follows that

5= ; % ;m‘f(tij) ()] < Meard() < 2mM.
We will need to be a little more careful in bounding the cdmition from the terms ¢ 1.
After removing the sef, the remaining integers ii* \ 7 may be grouped into maximal,
pairwise disjoint collections of successive indices, $dy, A € A}, wherecard A < 2m,
and each’, is a maximal unbroken sequence of successive integerssatifJt ; €2; is
either contained in an open interval of the fofm)_,, £;) or contained in an open interval
of the form(¢;, n,) for somej. In the former case, the valug$t) are non-decreasing as
t varies througrUi@,A Q; and we say that, is “increasing”; in the latter case, the values
f(t) are non-increasing asvaries through J,; €2 and we say that, is “decreasing”.
By partitioning the sum further, we see that

=30 Sl — £ = Z(Z L3 f) f(t)!)- (32)

i€l te; AEA METy te;

Suppose first that, is increasing. Then there existsuch thaUl.eh Q C (nj—1,&). If
i € I, then, foralls, ¢ € ;, we have f(s)— f(t)] < f((i4+1)k)— f(ik) and accordingly,

> 1) 10 = 2 S+ 0k) - S0

icly T teQy icly | teQy;

DI UG+ DR) = 0] < £&) — Fy0) < M

i€l

as the intervald2;,7 € I,} form an unbroken succession and so the surfkintele-
scopes to its endpoints. Suppose next thais decreasing. Then there exigtsuch
that U, €% C (§,my). If @ € I, then, for alls,t € Q;, we have|f(s) — f(t)] <
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f(ik) — f((z' + 1)k:) and accordingly, by a similar telescoping argument,

> 1) — 70 < 37 SR — 7 (G + D))

iel)\ teQi zEI)\ tGQ

=> [ F(E+1DE)] < F(&) = f(n;) < M.
i€ly
Thus, in all cases, the term enclosed in round brackets ng3®unded above byl and
s0Y." < M card A < 2mM. Pooling bounds on the right in (31) gives (29). O

Proof of Theorem 4:2The proof follows by conditioning o™ and leveraging (29). [

Proof of Theorem 4:3The proof follows a standard line and we simply sketch thenma
points. We begin by initially supposing that the suppidft) of F*) already coincides
with V.*). Then all subsequent convolutional iterates have the sappost: v =y,

By Helly’s selection principle, there exists a subseque{ﬁéif,i >1 } converging
weakly to a distribution, say; concentrated o, ™. Starting anew with7, we construct
a new sequence of distributiod&s,,, n > 0} by repeated convolution witf'® by first
settingGy, = G and, forn > 1, recursively formingG,, = F® x G,_;. AsG is
concentrated of,*) and F® places non-zero mass on the pdint follows that each of
the convolutional distribution&',, is also concentrated an™.

Now F) | = F(®) « ) andG, = F*®) « Gy. As FLY) — G, weakly, it foIIows that
{F*fj)ﬂ,z > 1} converges weakly t6/;. By induction, it follows that{ i>1}
converges weakly t6r; for each; > 0.

Forn > 0, let M,, = max;cz, F*(fj){t} denote the largest atomic mass of the distribu-
tion F¥). Clearly,0 < M, < 1. Then

Fioafty =D FW{t = s}FO{s} < M, Y~ FO{s} = M, F®(2Z) = M,

SELy, SEZLy,

*T5 +j7

for everyt € Zj, and soM,,.; < M,. As{M,,n > 0} is a non-increasing sequence
bounded below, it has a limit, say/. As every subsequence of a convergent sequence
has the same limit, it follows that/,,.; — M for eachj > 0. We conclude that
max;cz, G;{t} = M for eachj > 0.

We now argue that, in fact;,{t} = M for eacht v, Suppose, on the contrary,
thatG{t} < M for somet € V). We then see that

Gi{r} =Go{t} F*{r =t} + > Go{r —s}F®{s}

SEZR\{T—t}

<MF®O{r —t}+ > Go{r — s}F*{s}.

s€Zp\{T—1}
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The inequality is strict as, by assumptidi(®) has support in all of\*) and so it is the
case that"® {r — t} > 0. Bounding the remaining terms in the sum on the right, we
obtain

G {r} < MF®{r —t} + MF* ( P\N{T—1}) =

for everyr € Zi. 1t must hence follow under the reductio ad absurdum assomfitat
M > max, G1{7} = M and we have a contradiction. We conclude tigft} = M for
everyt € V% and, by induction, that, for eagh> 0, we must have;{t} = M for all
t € VAP, We have hence shown that there is a consldrguch thatF*(,'i){t} — M for
everyt € V¥, But then this constant must be equal fa:ard V¥ and soF}’ converges
weakly toF®, the uniform distribution concentrated &i".

To complete the proof we now remove our initial assumptia ¥* is a subgroup of
Z to begin with. Suppose now that the generatd? is a proper subset of the subgroup
/AR generated by it. A& ) includes the poind, we recall that the sequence of supports
(Vi 'n > 0} is increasing with limit setJ, V") = V.¥). Ascard V¥ < k, there must
in fact exist an integeNV such that the suppoﬁf]f, of the dlstrlbutlonF(N) coincides
with the subgrourj/*(k). It follows thatV,¥) = V¥ for all n > N and, in particular,
the subsequenc{d?fﬁjv, n > 1} consists of distributions all concentrated on the subgroup
V¥, As convolution is associativey®), = F& « & F# = F®  F®) and so
on, so that the entire subsequence can be built up by repeatwdlutions of the basic
distribution F*(]"{,) By the just concluded proof of the simplified setting, theuence
{F%,n > 1} converges weakly t(F *),

Now consider the subsequen{: ' i1,n > 1} obtained by convolving each mem-
ber of the sequencgF "), n > 1} with F®. On the one hands"),, = F®) « F)
while, on the other,

(k){t} _ Z F*(k){t _ s}F(k){s} — dv(k Z F {5} = ;k

(k)
SELy, R — card V,

for everyt € V *) 50 thatF®) x F*) = F *) 1t follows that{ F'*),, |, n > 1} converges
weakly to £*) and, by mductlon{ i > 1} converges weakly td" for each
j > 0. We conclude tha{Fm ,n > 1} converges weakly &™), n

Corollaries 4.3 and 4.4 follow quickly by&out’s identity [see, for example, Niven
and Zukerman (1980, Theorem 1.3, p. 7)] as, in both cdgés,is a generator of the
additive groupZy.
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