US011071517B2

a2 United States Patent
Sehgal et al.

US 11,071,517 B2
Jul. 27,2021

(10) Patent No.:
45) Date of Patent:

(54) MACHINE IMPLEMENTED METHODS,
SYSTEMS, AND APPARATUSES FOR
IMPROVING DIAGNOSTIC PERFORMANCE

(71) Applicant: The Trustees of The University of

Pennsylvania, Philadelphia, PA (US)

(72) Inventors: Chandra M. Sehgal, Wayne, PA (US);

Santosh S. Venkatesh, Swarthmore, PA

(US); Laith R. Sultan, Exton, PA (US)

(73)

Assignee: The Trustees of the University of

Pennsylvania, Philadelphia, PA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 905 days.

@
(22)

Appl. No.: 15/341,269

Filed: Nov. 2, 2016

(65) Prior Publication Data

US 2017/0140124 Al May 18, 2017

Related U.S. Application Data

Provisional application No. 62/253,314, filed on Nov.
10, 2015.

(60)

Int. CL.
A61B 8/08
A61B 5/00
G16H 50/30
G16H 30/20
G16H 50020
U.S. CL
CPC

(51)
(2006.01)
(2006.01)
(2018.01)
(2018.01)
(2018.01)
(52)
AGIB 8/0825 (2013.01); A6IB 5/4312
(2013.01); A61B 5/7275 (2013.01); A61B
8/085 (2013.01); AGIB 8/5223 (2013.01);

GI6H 30,20 (2018.01); G16H 50,20
(2018.01); G16H 50/30 (2018.01)
(58) Field of Classification Search
CPC G16H 50/70; G16H 50/30; G16H 10/60;
G16H 50/20
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,677,966 A * 10/1997 Doerrer .............. GOIN 15/1475
382/128

2001/0043729 Al* 112001 Giger .....cccceveenee GO6F 19/321
382/128

2003/0174873 Al*  9/2003 Giger .....cccoeveuene. GO6T 7/0012
382/128

2004/0077944 Al* 4/2004 Steinberg ............. A61B 5/0536
600/436

2008/0052007 ALl*  2/2008 YU ....cceovvvnriiennnn C12Q 1/6886
702/20

(Continued)

FOREIGN PATENT DOCUMENTS

WO WO0-2013049153 A2 * 4/2013
Primary Examiner — John P Go
(74) Attorney, Agent, or Firm — BakerHostetler

(57) ABSTRACT

A method for ultrasound diagnosis includes determining a
first risk of malignancy based on a human assessment of a
first set of features of one or more ultrasound images of a
target; determining a second risk of malignancy based on an
automatically extracted second set of features of the one or
more ultrasound images; determining at least one overall
risk value based on the first risk of malignancy and the
second risk of malignancy; and characterizing the at least
one overall risk value as one of a high confidence assessment
or a low confidence assessment.

14 Claims, 12 Drawing Sheets

A61B 5/4381

Hasdar
TBIRAD G fastioss snd
Hste Bsyesehnaies;

Pender 2

{Comprter eriactied fastmed and|
Inmricregrension chodfieg

AdaBaostar

Dhsmneste gy
gk condidemoe cases}

i

O

Low comtfidencn 2opesh

|

patiaiid
R

auafvaiy



US 11,071,517 B2
Page 2

(56)

U.S. PATENT DOCUMENTS

2010/0087756 Al*
2010/0098306 Al*
2010/0292571 Al*

2012/0095331 Al*

* cited by examiner

References Cited

4/2010 EgOrov .............
4/2010 Madabhushi
11/2010 Kim ..coooovvenee.

4/2012 Ohashi ..................

A61B 5/0053

600/587

GO6T 7/0012

382/128

A61B 5/02007

600/438

GO6T 7/0014

600/425



US 11,071,517 B2

Sheet 1 of 12

Jul. 27, 2021

U.S. Patent

19O

anjeA S ||e49A0 BUO 1Sed| 18 Suluiwia1ap

anjen ysiJ ||_I9A0 BUO 15e3| 1k 3yl Suiziiaioelieyd A/
oyl

0el

S2JN1E3} JO 195 PUOIDS PIJILIIXD
Ajjesiiewolne ue uo paseq Adueusdijeuw Jo 3SI4 PUOIIS & BUIUIWIDIBP

0t

JUBWISSSSE Uewny e Uo paseq Acueusijew Jo St 3s11) e Suluiuiap

001 \

011




U.S. Patent Jul. 27, 2021 Sheet 2 of 12 US 11,071,517 B2

200

-
= 2
= 2
2 7
7 0o
a0 P N
o £
‘&b A o
) @ L
(@]
& )
owowor S
Q.

210 e
220 ey




U.S. Patent Jul. 27, 2021 Sheet 3 of 12 US 11,071,517 B2

FIG. 3B

FIG. 3A




U.S. Patent Jul. 27, 2021 Sheet 4 of 12 US 11,071,517 B2

o o (Y
FIG. 4

CEEIEEEE #3

£ £

et i




US 11,071,517 B2

Sheet 5 of 12

Jul. 27, 2021

U.S. Patent

S Old

ih BRI oo

¥ daasusg -{d | dd

................................................................................................................

3
g snsnsq L4l vl




U.S. Patent Jul. 27, 2021 Sheet 6 of 12

US 11,071,517 B2

o o 7% o

¢ saniasa - (4] Wi

FIG. 6




U.S. Patent Jul. 27, 2021 Sheet 7 of 12 US 11,071,517 B2

)
3

!;-.:g-:-..

.

FIG. 7




U.S. Patent Jul. 27, 2021 Sheet 8 of 12 US 11,071,517 B2

g 5 o S 000 K

2R s{j‘g

FIG. 8

Brrop Rate
1

(P} waie 30




U.S. Patent Jul. 27, 2021 Sheet 9 of 12 US 11,071,517 B2

Pt

FIG. 9

‘
§
i
i

ER R RS ‘i_ k:{}ﬁ

£ g 2 i

Aunsuas paxy 8 ye Alnynads




U.S. Patent

Jul. 27, 2021

Sheet 10 of 12

US 11,071,517 B2

FERRR

PR O E R E ]

-Specilficity

PR IR {j z

FIG. 10

3]




U.S. Patent Jul. 27, 2021 Sheet 11 of 12 US 11,071,517 B2

Threshold

,,..
R ERE ?}1
B

FIG. 11




US 11,071,517 B2

Sheet 12 of 12

Jul. 27, 2021

U.S. Patent

{19l

I

s SOmpTOn W
gl oprondugy

; &
ipd

(TR WD AT
dpud mppondnp-uoy

TR
R

8 FOSGERY

B N SO e R TR SR AN AT
e samnzay pRsrERe myndne Pt R e g o]
T IRpesy 1 Zapuwg

s s

,,, R 5

i i

i

T eaiy 1 Amegry

PR i 3,30 o ol



US 11,071,517 B2

1

MACHINE IMPLEMENTED METHODS,
SYSTEMS, AND APPARATUSES FOR
IMPROVING DIAGNOSTIC PERFORMANCE

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Application No. 62/253,314, filed Nov. 10, 2015, the con-
tents of which are incorporated herein by reference in their
entireties for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with government support under
ROICA130946 awarded by the National Institutes of
Health. The government has certain rights in the invention.

FIELD OF THE INVENTION

This disclosure relates to machine implemented methods
for improving diagnostic performance as well as systems
and apparatuses using the same.

BACKGROUND OF THE INVENTION

There is an ongoing effort in improving breast ultrasound
for differentiating solid malignant and benign masses.
Despite advances in both breast imaging technology and
image analysis, the biopsy yield continues to be low and as
many as 70% to 85% of biopsies prove to be benign. One of
the main reasons for such low yield is that the false negatives
have major consequences related to patient mortality. The
cost of this low yield results in unnecessary trauma experi-
enced by patients (having masses biopsied which are ulti-
mately determined to be benign) and the financial burden
imposed by a large number of unneeded procedures.

SUMMARY OF THE INVENTION

Aspects of the invention relate to methods, systems and
apparatuses implementing machine apparatuses for improv-
ing diagnostic performance.

In accordance with one aspect of the invention, a method
is provided for a machine implemented method for ultra-
sound diagnosis. The method includes determining a first
risk of malignancy based on a human assessment of a first
set of features of one or more ultrasound images of a target;
determining a second risk of malignancy based on an
automatically extracted second set of features of the one or
more ultrasound images; determining at least one overall
risk value based on the first risk of malignancy and the
second risk of malignancy; and characterizing the at least
one overall risk value as one of a high confidence assessment
or a low confidence assessment.

In accordance with another aspect of the invention, an
system is provided for diagnosing a tumor using an imaging
scan of a target. The system includes an imaging system
configured to perform an imaging scan of a target and to
obtain imaging information regarding the target; and a
processing system configured to receive the imaging infor-
mation from the imaging system and to extract a second set
of features of the imaging information. The processing
system is further configured to receive a human assessment
of the imaging information, wherein the human assessment
of the imaging information is based on a first set of features
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of the imaging information. Additionally, the processing
system is configured to determine an overall risk value based
on an analysis of the second set of features and the human
assessment of the first set of features.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is best understood from the following
detailed description when read in connection with the
accompanying drawings, with like elements having the same
reference numerals. When a plurality of similar elements are
present, a single reference numeral may be assigned to the
plurality of similar elements with a small letter designation
referring to specific elements. When referring to the ele-
ments collectively or to a non-specific one or more of the
elements, the small letter designation may be dropped. This
emphasizes that according to common practice, the various
features of the drawings are not drawn to scale unless
otherwise indicated. On the contrary, the dimensions of the
various features may be expanded or reduced for clarity.
Included in the drawings are the following figures:

FIG. 1 is a flow diagram of a machine implemented
method for improving diagnostic performance in accordance
with aspects of the invention;

FIG. 2 is a schematic of a system for improving diagnostic
performance according to aspects of the invention;

FIG. 3A is an ultrasound image of a tumor with benign
features;

FIG. 3B is an ultrasound image of a tumor with malignant
features;

FIG. 4 is a graph illustrating the performance of two
human observers and a computer-based image analysis
according to aspects of the invention;

FIG. 5 is a graph illustrating a distribution of assessments
as identified by two human observers as well as the accuracy
of such identifications in accordance with aspects of the
invention;

FIG. 6 is a graph illustrating a distribution of assessments,
and the accuracy thereof, as identified by two human observ-
ers in accordance with the method of FIG. 1;

FIG. 7 is a graph illustrating operating curves at different
drop rates according to aspects of the invention;

FIG. 8 is a graph illustrating the effect of the drop rate on
diagnostic performance according to aspects of the inven-
tion;

FIG. 9 is a graph illustrating the change in specificity with
drop rate at different fixed specificity values in accordance
with aspects of the invention;

FIG. 10 is a graph illustrating operating curves of the
consensus probability estimates according to aspects of the
invention;

FIG. 11 is a graph illustrating the amount of agreement
between human assessment and computer analysis at differ-
ent probability thresholds in accordance with aspects of the
invention; and

FIG. 12 is a schematic of the machine implemented
method employed in the example for improving diagnostic
performance according to aspects of the invention.

DETAILED DESCRIPTION OF THE
INVENTION

The inventors recognized that diagnostic performance
may be improved by completing multiple readings of an
imaging scan of a suspected target abnormality, such as a
cancerous tumor. In particular, the inventors recognized that
by correlating a human assessment of one or more images
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with a second, computer generated assessment of the
images, superior diagnostic performance may be obtained
by methods, systems, and apparatuses for diagnosing target
masses.

The present invention may be employed to improve the
diagnostic performance of any image that is assessed to
diagnosis or treat patients such as, e.g., ultrasound images,
MRI images, X-ray images, electroencephalography, mag-
netoencephalography, and electrocardiography. While the
examples herein may refer to ultrasound imaging, one of
ordinary skill in the art, upon reading this disclosure, will
understand that the principles described herein are not so
limited and may be applied to any imaging modality.

FIG. 1 depicts a machine implemented method 100 for
improving diagnostic performance. As a general overview,
method 100 includes determining a first risk of malignancy,
determining a second risk of malignancy, determining at
least one overall risk value, and characterizing the at least
one overall risk value.

In step 110, a first risk of malignancy is determined by
human assessment. The human observer may extract a first
set of features from the image of a target (e.g. a tumor,
lesion, biological mass, etc.). Based on the first set of
features, the human observer may determine a risk of
malignancy. The first set of features may include any char-
acteristics or features of being malignant or benign that may
be used by one of skill in the art. The human assessment may
include rating each of the features on a binary scale (e.g.,
presence or absence) or on a multilevel scale to indicate the
level of confidence in the presence of the feature.

In step 120, a second risk of malignancy is determined
based on an automatically extracted second set of features.
A data processor may be employed to extract the second set
of features from the same images analyzed by the human
observer or from different images of the target. The data
processor may extract values for features such as grayscale,
shape, coarseness of a margin, texture of a lesion, informa-
tion based on Doppler effects, elastography, etc. Other
machine-extractable features for determining if a tumor is
malignant or benign may be used without departing from the
spirit of the invention disclosed herein. The data processor
may employ stored images, e.g. a library of images, with
known diagnoses to facilitate determination of the second
risk of malignancy based on the automatically extracted
second set of features.

In one embodiment, more than two sets of features may
be used to generate additional determinations of risk of
malignancy, thereby enhancing the accuracy of the overall
risk value.

The target may be segmented by an automated, semi-
automated, or manual tracing of the target. Segmentation of
the target may facilitate the precision and/or extraction of the
second set of features by the data processor. In one embodi-
ment, the target is partitioned into sectors to facilitate
extraction of the first and/or second set of features. For
example, the target may be partitioned into sectors, whereby
each sector is analyzed separately and/or compared to each
other. Partitioning of the target may also be automated,
semi-automated, or based on manual identification of sec-
tors.

Method 100 may include applying a classifier to the sets
of features extracted by the human observer and/or the data
processor. In one embodiment, the classifiers model an
underlying chance that the target is malignant (“M”) or that
the target is benign (“B”). The classifiers may be selected to
match the characteristics in the extracted set of features. The
classifiers weigh the extracted features and determine a first
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risk of malignancy based on the first extracted set of features
and/or a second risk of malignancy based on the second
extracted set of features. Exemplary classifiers include, e.g.,
logistic regression, Naive Bayes, continuous, ordinal, nomi-
nal, spatial, and frequency classifiers.

In step 130, at least one overall risk value is determined.
The overall risk value may be based on combining the first
risk of malignancy and the second risk of malignancy.

In another embodiment, method 100 employs an adaptive
learning analysis that improves the classifiers’ determination
of a risk of malignancy. The adaptive learning analysis may
be employed to correlate the determined first risk of malig-
nancy and the second risk of malignancy, thereby determin-
ing the overall risk value. For example, the adaptive learning
analysis may be employed to analyze the first set of features
to determine the first risk of malignancy and/or the second
set of features to determine the second risk of malignancy.
In one embodiment, the adaptive leaning analysis is applied
to both the first and second set of features and/or the first and
second classifiers, thereby correlating and relying upon the
stronger indications of malignancy or benignness identified
by the two sets of features. The adaptive learning analysis
may minimize the exponential loss criterion on the set of
features by using a forward, stage-wise additive model to
combine multiple constituent classifiers. In one embodi-
ment, the adaptive learning analysis is the Adaptive Boost-
ing process.

Adaptive learning analysis may be used to examine the
independent diagnosis of the first classifier and the second
classifier. For example, the adaptive learning analysis may
assess the definitiveness of diagnosis by measuring the
distance from a mid-probability of 0.5. Assessments that
have less definitive diagnosis by on one classifier regarding
one or more features receive greater weight in the final
diagnosis from the second classifier regarding those same
one or more features, thereby improving performance.

In one embodiment, the adaptive learning analysis begins
with a tabula rasa in which the elements of the set of features
are weighted equally. In the first iteration of analysis, the
first classifier in the sequence is applied on the uniformly
weighted elements and, at the end of the iteration, the sample
elements are reweighted with greater weight placed on those
elements that the classifier found difficult to label correctly.
The iterations now proceed in a sequence of rounds, each
constituent classifier is applied sequentially on a reweighted
set of elements with greater weight placed on the elements
that the previous classifier in the sequence found difficult to
classify accurately. At the end of each iteration of analysis,
the sample error (or, more precisely, the risk) of the classifier
being applied on the (reweighted) set of features or elements
thereof is recorded before the elements are reweighted yet
again and analyzed by the next classifier in the sequence of
iterations. The final boosted classifier forms its prediction as
a convex combination of the predictions of each constituent
classifier, the more accurate classifiers (with respect to
iteration error) given more weight.

In step 140, the at least one overall risk value is charac-
terized as either a high confidence or low confidence assess-
ment. The characterization of high confidence or low con-
fidence refers to a statistical likelihood that the overall risk
value accurately indicates whether the target is benign or
malignant. To further improve the diagnostic performance of
method 100, low confidence assessments may undergo fur-
ther imaging and/or evaluation. For example, in one embodi-
ment, when the overall risk value is characterized as being
a low confidence assessment, method 100 includes addi-
tional imaging of the target. In another embodiment, when
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the overall risk value is characterized as being of low
confidence, method 100 includes a biopsy of the target. In
yet another embodiment, method 100 indicates that further
evaluation of the target may be warranted when the overall
risk value is characterized as a low confidence assessment.

The assessment may be characterized as high confidence
or low confidence by comparing the overall risk value to an
ambiguity threshold range and if the at least one overall risk
value falls within the ambiguity threshold range, character-
izing the at least one overall risk value as a low confidence
assessment. Additionally or alternatively, an overall risk
value may be characterized as a low confidence assessment
if the two risk of malignancies indicate different outcomes.
For example, if one risk of malignancy indicates that the
target is benign and the other risk of malignancy indicates
that the target is malignant, than the overall risk value may
be characterized as a low confidence assessment.

FIG. 2 depicts a system 200 for diagnosing a tumor using
an imaging scan of a target. As a general overview, system
200 includes a imaging system 210 and a processing system
220. System 200 may include, for example, an ultrasound
diagnosis apparatus configured to employ method 100.

Imaging system 210 is configured to perform an imaging
scan of a target (e.g., a tumor and/or biomass) and to obtain
imaging information regarding the target. Imaging system
210 may include any imaging modality, e.g., an ultrasound
system, MRI system, X-ray system, electroencephalography
system, magnetoencephalography system, electrocardiogra-
phy system, etc. The imaging system 210 may be integrally
connected to processing system 220 or may be remotely
connected by way of a local area network (LAN), a wireless
network, a satellite communication network, a landline
telephone network, or other suitable network to facilitate
two way communication between imaging system 210 and
processing system 220. In one embodiment, however, imag-
ing system 210 is not connected to processing system 220,
but merely provides images that may be subsequently pro-
vided to processing system 220.

Processing system 220 is configured to receive the imag-
ing information from imaging system 210 and to extract a
second set of features from the imaging information. Pro-
cessing system 220 may automatically, semi-automatically,
or require manual identification of one or more features to
extract the second set of features. In one embodiment,
processing system 220 automatically extracts the second set
of features after the target is partitioned. Preferably, pro-
cessing system 220 is configured to automatically or semi-
automatically partition the target.

Processing system 220 may be further configured to
receive a human assessment of the imaging information,
wherein the human assessment of the imaging information is
based on a first set of features of the imaging information.
For example, a physician or imaging technician may assess
physiological data from the imaging information and report
these assessments to processing system 220 using an inter-
face located at or remote from imaging system 210.

Preferably, the processing system 220 is configured to
determine an overall risk value based on an analysis of the
second set of features and the human assessment of the first
set of features.

System 200 may further characterize the overall risk value
as being a high confidence assessment or a low confidence
assessment. For example, system 200 may be configured to
indicate by way of sound, image, or other type of notifica-
tion, that the overall risk value is a low confidence assess-
ment and/or high confidence assessment. In one embodi-
ment, system 200 is configured to run additional evaluation
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6

of'the target, if the overall risk value is characterized as a low
confidence assessment. Determination of whether the over-
all risk value is of high confidence or low confidence may be
based on whether the first risk of malignancy and the second
risk of malignancy are consistent with each other or may be
based on comparing the overall risk value to an ambiguity
threshold.

EXAMPLES

The following examples are a non-limiting embodiment
of the present invention, included herein to demonstrate the
potential of aspects of the present invention.

Example 1

FIG. 12 generally depicts the method employed in this
example. Two independent sets of features were extracted
and classified from each image in the library of breast
ultrasound images, one set being extracted by a radiologist’s
interpretation of ultrasound BIRADS (BI-RADS ) and one
set of features extracted by way of a computer from the
images (FIG. 12, step a). The radiologist’s interpretations of
ultrasound images (BI-RADS, ) could be combined with the
computer-identified features using adaptive boosting or a
consensus method, described below (FIG. 12, step b). This
process was implemented to expand the discriminatory
region of each feature set by incorporating the strengths of
each set of features. Despite combining the regions of
strength of each of the two independent feature sets some
assessments remained characterized as being a low confi-
dence assessment. These low confident assessments were
removed from the dataset for further evaluation by addi-
tional imaging (FIG. 12, step ¢). The remaining assessments,
representing high confidence group, were evaluated for their
diagnostic performance (FIG. 12, step d).

To ensure the accuracy of results, the images were
reviewed independently by two physicians (hereafter
“Observer 1” and/or “Observer 2”) using ACR guidelines
(ACR 2003) to produce two sets of human assessment for
the risk of malignancy. The observers were not privy to other
patient information including age, medical history, and
biopsy results. The BI-RADS, ; features consisted of ten
different features that characterize margin properties, echo
patterns, posterior shadowing, and enhancement of the
lesions.

The library of images included five to seven views
produced by sonographic images for each target (e.g. mass
and/or tumor) in radial and anti-radial planes. FIGS. 3A and
3B show examples of breast masses with malignant and
benign characteristics.

Each of the patients in this example also underwent a
biopsy. The results of the biopsy were compared to the
results of the method employed herein to determine the
accuracy of said method. Of the 264 masses 179 and 85 were
designated as benign and malignant, respectively. Among
the malignant lesions (76%) were invasive carcinoma, (8%)
were invasive lobular carcinoma, (8%) were ductal carci-
noma in situ; and (4%) were adenocarcinoma. The remain-
ing 4% were mixed including poorly differentiated carcino-
mas and mucinous mammary carcinoma. Of the benign
masses, 44% were fibroadenoma, 33% had miscellaneous
fibrocystic changes, 6% were sclerosing adenosis, and the
remaining 17% were benign lesions without atypia in the
histopathology report. The mean age of all the patients
studied was 51.5+14.7 years.
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Two qualitatively different types of features were
extracted from images (e.g. sonograms in this example). The
first type consisted of ultrasound BI-RADS, ; features that
are used routinely for evaluating suspicious breast lesions in
breast ultrasound images. BI-RADS, is the standardized
lexicon proposed by American College of Radiology (ACR)
for reporting and characterizing breast masses (ACR 2003).

The second set of features was extracted by an automated
procedure from manual tracings. For each breast ultrasound
image reviewed by the physicians the lesion was manually
traced on a computer display using a mouse. Eight features
describing grayscale, shape, and coarseness of the margin
were automatically computed from the traced margin. These
features were extracted by partitioning the lesion into N
sectors and then comparing the difference between the inside
and the outside of each sector. The features used in the
analysis included the brightness difference between the
lesion interior and immediate exterior, margin sharpness,
angular variation in brightness, depth-to-width ratio, axis
ratio, tortuosity, radius variation, and elliptically normalized
skeleton. In addition to ultrasound image features, patient
age and mammographic BI-RADS _ (categories 1-5 repre-
senting probabilities of increasing malignancy) were also
included in the analysis completed by the computer.

From the image of each lesion a set of features F=F,,
F,, . . ., Fy were extracted. These extracted features
constituted the “measurements” representing the character-
istics of the underlying lesions.

Two types of classifiers were applied to determine the
accuracy and/or precision of each classifier. The Naive
Bayes formulation was applied as a classifier. In the Naive
Bayes formulation the features are assumed to be condition-
ally independent. In the case of nominal features, discrete
values were expressed mathematically as

P(FLF,, ..., FylM)=P(F | M)xP(F5|M)x . . .
xP(F M)
where an expression of the form P(*l*) stands for a condi-
tional probability with P(¢) representing an unconditional
probability. Pursuant to Bayes’ rule, the a posteriori prob-
ability of malignance is given by

1 N
PM|F)= EP(M)HP(FJ'IM)
=1

where, by total probability, we may write the normalizing
constant 7 representing the unconditional probability of
observing the given features in the form

Z=P(F)=P(F\M)P(M)+P(F|B)P(B).

The quantities P(M) and P(B) constitute a priori prob-
abilities in the Bayesian settings of malignant and benign
assessments. These probabilities are not known ahead of
time but are estimated in the usual way by the relative
frequency of occurrence (malignancy) in the training data
set.

The Logistic Regression formulation was also applied as
a classifier to determine the accuracy and/or precision of
such classifier. Logistic regression models arise in settings
where features take a continuum of values in a finite-
dimensional space out of a desire to have the a posteriori
class probabilities expressible in terms of simple linear
functions of the features. Formally, the logarithm of the odds
ratio is assumed to be in the form
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P(M | F)
EPEI

N
=(,‘0+ZCJ'FJ'
J=1

which, in view of the fact that P(BIF)=1-P(MIF), we may
express as

PMIR) =17 exp(—2(F))

where z(F) is given by the linear form

2(Fy=co+Z, N o
Advantageously, this classifier may be applied while only
evaluating the linear parameters c,, c,, . . ., C5. Additionally,
the Logistic Regression classifier is well suited for the
continuous nature of the set of features extracted automati-
cally by the data processor. Similar to BI-RADS, data
training and testing was performed by leave-one-out cross-
validation. In this Example, leave-one-out cross-validation
was employed by training N-1 samples of the dataset to
predict the probability of the remaining Nth sample. The
prediction was compared with the biopsy results. The pro-
cess was employed with each sample tested in this Example.

In this example, the first risk of malignancy, which was
determined by human assessment, and the second risk of
malignancy, which was automatically determined, were
combined using an adaptive learning analysis to determine
real-valued outcomes. Here, the adaptive learning analysis
was Adaptive Boosting (hereafter “AdaBoost™).

The representation of a lesion in feature space and its
(biopsy-certified) label form a pair (x, y) where X represents
a feature vector and y is the associated label. In our current
context of features extracted by two readers we may repre-
sent the feature vector in the form x=(F" F®) where
FW=F @ F,, " represents the collection of (nominal-
valued) BI-RADS,, features and F®=F,® . . F, @
represents the collection of (continuum-valued) computer-
generated features. The associated label y takes one of two
numeric values, 1 representing malignant (M), and 0 repre-
senting benign (B). In this setting a real-valued classifier is
a function f(x) which maps each vector x in feature space
into a real value which nominally represents the classifier’s
estimate of the a posteriori probability of malignancy con-
ditioned on the observed feature vector x. One desirable goal
in classifier design is to minimize, in some suitable sense,
the error

1fix)-yl.

Let f1(F™) and £, (F®) represent the outputs of the Naive
Bayes and Logistic Regression classifiers operating on their
respective feature sets. While, nominally, each of these
classifiers operates on the entire feature space x=(F"), F®),
in practice they have been selected to match the character-
istics of the two rather different types of features that have
been generated. Accordingly, the Naive Bayes classification
f,00)=f,(F") depends only on the nominal BI-RADSus
features FW=F @, . F, ), while, in a similar fashion, the
Logistic Regresswn cla551ﬁcat10n f(x)=(F®) depends only
on the computer-generated features F@=F, Fnt
Thus, each of these classifiers operates in a natural lower-
dimensional subspace of the entire feature space. We may
view these procedures in a formal sense as using domain
knowledge to reduce both the effective dimensionality of the
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feature space and the effective complexity of the resulting
classifier f(*) obtained by boosting from £, (*) and f,(*). This
in effect accomplishes a “practitioner’s complexity regular-
ization” by using domain knowledge to mitigate both Bell-
man’s curse of dimensionality as well as the danger of
overfitting.

The boosted classifier f(*) is obtained from the constituent
classifiers f,(*) and f,(*) by training on a random sample of
data (x4, ¥,), X3, ¥2)s - - - » (X,y,,) obtained (presumptively)
by independent sampling from an underlying probability
distribution governing the class-conditional distribution of
features and the a priori probabilities of the two classes in
the population at large. We train first on the Naive Bayes
classifier f,(¢) and then on the Logistic Regression classifier
f,(¢). The order may of course be reversed without any
essential change in the algorithm.

In the first iteration, equal weight is placed on each
element of the set of features:

1
wLi= forl < j=<n.

The classifier f1 is fitted to the training data using weights
w1, where fitting is with respect to the squared error. The
optimum classifier f1 is selected (in our case from the class
of Naive Bayes classifiers) and its weighted (minimum)
squared error computed: err,=X_ "w, If 1(xj)—yjlz. The
weight (or importance) cl of classifier f1 is now deduced
from the squared error via the logarithm of the odds ratio,

11n(1—err1]
Cl‘i erry )

Round 2 (the final round of iterations in this example)
begins with a reweighting of the sample elements. For
I=j=n, the data point (x;, y,) is given weight

wi etk ()5
W2,j = ﬁ

where Z, is a normalization factor chosen so that the sum
of the weights is 1. The second classifier f, is now fitted to
the training data using weights w,j, fitting again with respect
to squared error. The squared error err, and the weight
(importance) c, of the best Logistic Regression classifier f,
are now computed by analogous formulae,

2 1 1-err
erry = ZWZ,jle(xj) -yl and ez = zlog( s )
=

This concludes the iterations. It should be noted that,
without loss of generality, we may assumed errl and err, are
both <2 (if necessary, by interchanging the roles of 0 and 1)
so that the classifier weights ¢, and c, are both positive. The
AdaBoost classifier f is formed as a convex combination of
the two constituent classifiers f; and f,weighted in accor-
dance with their relative importance ¢, and c,, respectively.
Thus, we set
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2

1
fx)= mfl(x) + mfz(x)-

In the standard mode of operation, once the AdaBoost
classifier f is determined, a hard-limited classification of a
given lesion with feature vector x is made by selecting a
threshold t of operation and mapping x to 1 (malignant) or
0 (benign) in accordance with whether f(x)>t or f(x)=t,
respectively. By varying t it is possible to obtain the ROC
curve characteristic of the classifier. In this example, the
error function was modified to account for the continuous
nature of the classifiers used, and to limit over-weighting
assessments with a large difference between the predicted
and actual outcome.

The AdaBoost classifier output f(x) represented an esti-
mate of the a posteriori probability of malignancy for a given
a vector of features x. Accordingly, values near 0 or 1
represented high confidence assessments that were benign or
malignant, respectively, while values near % represented
ambiguous assessments that should be further evaluated by
other imaging methods.

An ambiguity threshold range was selected by specifying
an ambiguity interval (t,,t,) with a lower threshold t; and an
upper threshold t,,. Lesions for which the feature vector x
satisfies t;<f(x)<t,, were characterized as a low confidence
assessment and, thus, removed/set aside for further testing
by other imaging methods. On the other hand, lesions for
which the feature vector x was outside the ambiguity thresh-
old range were recorded as 1 or O depending on whether
f(x)>t, or f(x)<ti, respectively. With the ambiguity threshold
range centered on % (corresponding to the maximum uncer-
tainty) drop rate was determined for different ambiguity
intervals. The drop rate is number of assessments that are
identified for further imaging. As low confidence assess-
ments will require additional testing, the drop rate stands in
the role of a quantifiable surrogate for a cost; the perfor-
mance of the classifier on the disambiguated assessments
that are retained provides a second quantifiable attribute.
Hence applying a ambiguity threshold range operates effec-
tively in a two-dimensional cost performance rubric and
allows users to achieve desired level of performance or drop
rates by varying the location and size and of the ambiguity
interval.

As an alternatively method for characterizing the confi-
dence of the assessment, the inventors believe a consensus
method may provide suitable advantages. Under the pro-
posed consensus method assessments having a first risk of
malignancy and a second risk of malignancy that are con-
tradictory are characterized as low confidence, while assess-
ments having both the first and second risk of malignancies
indicating that the target is malignant or bingeing are char-
acterized as high confidence.

The methods employed in this Example provided highly
advantageous results. Both visual and computer features
were high performers with area under the ROC curve (A))
ranging between 0.866 to 0.924 (Rows A and B, Table 1).
The area under the ROC curve, A_, for the two observers was
markedly different, 0.924 for Observer 1 versus 0.866 for
Observer 2, with Observer 2 underperforming Observer 1 in
all parts of the curve (FIG. 4). The difference of 0.058 in A_
between the two observers was significant (p=0.006).

The ROC curve for computer features was in between the
performance of the two observers; A_ for computer features
was lower than that of Observer 1, 0.887 vs. 0.924, but
higher than that of Observer 2, 0.887 vs. 0.866. The differ-
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ence in A_ between observers and the computer analysis was
not significant: p=0.334 for Observer 1 vs. computer and
p=0.279 for Observer 2 vs. computer.

Combining visual and computer features with AdaBoost
increased A_ for both observers: 0.924 to 0.937 for Observer
1 and 0.866 to 0.905 for Observer 2 (Rows C and D, Table
1). The difference in performance between the observers was
reduced to 0.031 after boosting compared to the difference
of 0.058 observed without boosting. The improvement in
performance after boosting was significant (p=0.016). The
A_ values obtained by taking visual features first, followed
by computer-generated features was comparable to those
obtained by taking computer generated features first, fol-
lowed by visual features: 0.937 and 0.936 for Observer 1 and
0.906 and 0.905 for Observer 2 (Rows C and D, Table 1).

Some of the benefits of employing adaptive learning
analysis are depicted in FIGS. 5 and 6. In FIG. 5 we plot the
estimate of the a posteriori probability P(MIF) engendered
by Observer 1 versus that for Observer 2, these probability
estimates obtained by using the Naive Bayes procedure on
the visual features generated by the two observers for each
case. In FIG. 6 we plot the revised estimates of the two a
posteriori probabilities P(MIF) obtained by AdaBoost by
adaptively boosting visual features for the two observers
with computer-identified features for each image. Without
boosting there is a marked difference between the probabil-
ity estimates of the two observers. The dotted line in the
figure shows the linear (y=mx) least square fit of the data
with R* of 0.44. The concordance correlation coefficient
(p.), estimating the degree to which pairs of observations fall
on the 45° line through the origin was 0.80. After AdaBoost-
ing the probability estimates of the two observers were
uniformly distributed and became better correlated with R?
01 0.64 and p_. of 0.93 (FIG. 6). The difference between the
un-boosted and boosted groups for both measures, R?
(p<0.006) and p,. (p<0.0001), was significant. These figures
illustrate a key feature that adaptive boosting results in a
greater consensus with a concomitant reduction in variabil-
ity across observers.

FIG. 7 shows the effect of using a banded ambiguity
threshold range where the assessments within the low con-
fidence threshold band are dropped and the diagnostic
decision is postponed for additional testing due to low
diagnostic performance within the band. The ROC curves
for three drop rates ranging from 0% to 40% show a uniform
improvement in diagnostic performance with increase in
drop rate. Indeed, as the drop rate increases the curves
converge towards unit sensitivity and specificity.

In FIG. 8 the diagnostic performance for each observer for
the AdaBoost classifier as a function of the drop rate. The
area under the ROC curve increases monotonically with
drop rate for both observers (though performance on the
feature set engendered by Observer 1, referred to as O1 in
this figure, dominates at all drop rates). The increase,
however, is nonlinear with rapid improvement initially mod-
erating to a more gradual improvement at drop rates above
20%. Eventually, the curves plateau with minimal benefits
from further increases in drop rates above 50%. A 20% drop
rate provides a reasonable compromise between drop rate
and performance improvement; at this drop rate the ROC
area under the curve increases from 0.937+0.018 to
0.974£0.012 for Observer 1 and 0.906+0.023 to
0.952+0.017 for Observer 2. In both cases rather dramatic
improvement in performance at a moderate cost in terms of
assessments identified for further evaluation.

The change in specificity at a fixed sensitivity for different
drop fractions is shown in FIG. 9. In this example, sensi-
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tivity relates to the amount of malignant cases that were
correctly determined by the methods tested in this Example
to be malignant. For example, here, the sensitivity is the
proportion of patients who test positive for breast cancer
among those who have breast cancer. In this Example,
specificity, on the other hand, relates to the amount of benign
cases that were correctly determined by the method tested in
this Example to be benign. For example, here, specificity is
the proportion of patients who test negative for breast cancer
among those who do not have breast cancer. The graph in
FIG. 9 illustrates that a user can choose an operation point
to achieve different sensitivities and specificities. For
example, at a drop rate of 20% (vertical arrow) a specificity
01'0.95 can be achieved at a sensitivity of 0.90. For the same
drop rate the specificity drops to 0.88 and 0.48 at sensitivi-
ties of 0.95 and 1.0, respectively.

FIG. 10 shows the results of diagnostic performance when
the consensus method between human assessment and com-
puter assessment was used for characterizing low confidence
and/or high confidence assessments of the overall risk value,
whereby assessments having contradictory risk of malig-
nancy were characterized as low confidence assessments.
For both observers the use of computer analysis increased
the area under the ROC curves generated by varying the
threshold for classification of malignant assessments: for
Observer 1 A_ increased to 0. 0.973x0.012 while for
Observer 2 A, increased to 0.955£0.016. The difference of
0.028 in A, of the two observers was not significant
(p=0.0873).

FIG. 11 shows the results of agreement between the visual
and computer analysis as a function of the selected threshold
for malignance. The average agreement between visual and
computer analysis was 80.9+5.2% and 80.7+5.7% for
Observers 1 and 2. The difference was not significant
(p=0.77). While the drop rate for a consensus-based method
is not directly controllable, FIG. 10 shows that we are
operating at about a 20% drop rate over a wide range of
thresholds. This suggests that consensus is, in effect, pro-
viding a heuristic approximation to a boosting procedure
coupled with a 20% drop rate. This interpretation supports
the results of Table 2 which shows that the performance of
the consensus-based procedure with a drop rate of approxi-
mately 20% (inherited from assessments where there is no
consensus) is essentially the same as that of the AdaBoost
procedure coupled with selective characterization of 20% of
the assessments as low confidence (Row E in Table 2
corresponds to a drop rate of 20% in FIG. 8; Rows C and D
in Table 1 correspond to a drop rate of 0% in FIG. 4).

This example shows that the diagnostic performance is
enhanced using two high accuracy classifiers, such as by
human assessment and machine assessment. For example,
the use of AdaBoost had an interesting and beneficial effect
on the performance of individual observers. Specifically,
although the diagnostic performance of two observers on
aggregate was high, 0.866 versus 0.924, there were signifi-
cant differences in the probability estimates on a case by
case basis as illustrated by the scatter in FIG. 5. These
differences are to be expected given the significant biologi-
cal variability in the characteristics of breast lesions, the
limitations of imaging systems in depicting theses lesions
accurately, and differences in observer expertise. However,
after AdaBoost was used the probability estimates of the two
observers became more uniformly distributed and correlated
as shown in FIG. 6. For example, a comparison of FIGS. 4
and 10 shows that the diagnostic performance of the two
observers which was noticeably different initially became
comparable to one another after assessments of disagree-
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ment were identified for further evaluations by the consen-
sus seeking procedure. Although further investigations are
needed, these results suggest that AdaBoost could be a
useful means to improve consistency in the diagnosis
between different observers.

Additionally, the results show that characterizing assess-
ments as low confidence, thereby identifying such assess-
ments for further evaluation, increased the accuracy on
assessments for which a prediction is made, at the quanti-
fiable cost of making no prediction on a fraction of assess-
ments, the drop rate. The extent of improvement increased
with the increase in the drop rate fraction. Surprisingly, there
was a near-perfect classification performance is achievable
in a majority of assessments at the cost of a modest drop rate
of ambiguous assessments identified as low confidence in a
computationally effective manner for additional testing. For
example, at a drop rate of 20% an area under the ROC curve
of A,=0.975 can be achieved for Observer 1 (FIGS. 7 and 8).
A more detailed examination (FIGS. 8 and 9) shows that for
sensitivities between 0.90 and 0.95, one can achieve high
specificities between 0.975 and 0.88 for the visual feature set
generated by Observer 1 coupled with computer-generated
features via Adaptive Boosting and selective characteriza-

tion of low confidence assessments at a 20% drop rate.
TABLE 1
Observer 1 Computer  Observer 2
Features/Classifier (A) (A) (A)
A Visual features, Naive 0.924 =0.021 0.866 = 0.027
Bayes
B Computer features, 0.887 = 0.025
Logistic Regression
Observer 1 + Observer 2 +
Computer Computer
C AdaBoost, Visual 0.937 £ 0.018 0.906 = 0.023
Features (A) —
Computer features (B)
D AdaBoost, Computer 0.936 £ 0.019 0.905 £ 0.023
Features (B) — Visual
Features (A)
Table 2
Observer 1 + Observer 2 +
Computer Computer
Features/Classifier (A) (A)
A AdaBoost, Visual Features (A) — 0.975 = 0.018 0.956 = 0.023
Computer features (B), Drop Rate 20%
B Consensus, Visual Features ¢ 0.973 £ 0.012 0.955 + 0.016

Computer Features, Drop Rate ~20%
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Example 2

For illustrative purposes, suppose that there are 200
assessments with 100 benign and 100 malignant and that the
distribution of malignant and benign assessments is the same
in the sub-sample of assessments characterized as low
confidence. Thus, at a 20% drop rate there will be 80
assessments apiece of malignant and benign assessments in
the retained subpopulation of 160 high confidence assess-
ments and 20 assessments apiece of malignant and benign
assessments in the low confidence subpopulation of 40
assessments (presumed to all be sent for a biopsy). In the
high confidence group, if we operate at 80% specificity we
obtain a sensitivity (true positive fraction) of 98% from the
middle curve of FIG. 7 leading to 2 missed malignant
assessments (rounded up from 1.6) out of the total of 80 in
this group. This is the regrettable false negative rate at this
level of specificity. At an operational point of 80% speci-
ficity, 16 of the 80 benign assessments in the high confidence
group are misdiagnosed (false positives) and together with
the 20 low confidence benign assessments this leads to 36
unnecessary biopsies out of a total of 134 biopsies per-
formed with 2 missed malignant assessments (also some-
times referred to as cases) (Table 3).

To compare this procedure with operation without char-
acterizing assessments as low confidence for further evalu-
ation, we must function at the same true positive rate
(sensitivity 98%) leading to 2 missed malignant assess-
ments. As FIG. 7 illustrates, the corresponding specificity
for this operating point for the lowest curve (representing no
characterization and further evaluation of low confidence
assessments) is somewhere between 0.4 to 0.50 due to the
fact the curve is very flat at high sensitivities. At a sensitivity
01 0.98 and a specificity of 0.45, for definiteness, there will
be 55 unnecessary biopsies out of the 153 biopsies per-
formed again with 2 missed malignant assessments (Table
3). Thus, keeping the false negative rate low at 2%, char-
acterizing and further evaluating low confidence assess-
ments would reduce the number of unnecessary biopsies
from 55 to 36 (a reduction of 35%).

Our analysis in this example is for illustrative purposes to
demonstrate the scope for reduction in the number of
unnecessary biopsies at a very low false negative rate. Many
factors affect the actual gains in practice. In Example 1, there
were two benign masses for every malignant case. If this a
priori information is taken into consideration the benefit is
even greater than in our numerical example: for 2 missed
malignancies, there are 34 unnecessary biopsies out of 99
biopsies performed for the low confidence assessments
compared to 73 unnecessary biopsies out of 139 biopsies
performed when there was no characterizing the confidence
of the case. Similarly, the benefits will be even greater than
in this Example if malignant lesions, which are often more
difficult to characterize, are present in larger numbers in the
ambiguous low group that is identified as a low confidence
assessment.

TABLE 3

20% prune rate

High Confidence Group Low Confidence Group

Malignant cases

Sensitivity = 0.98

2% 98%

Benign cases
80
Specificity = 0.8

20% 80%

Malignant cases Benign cases

80 20 20



US 11,071,517 B2

TABLE 3-continued
False + ive True + ive False + ive True + ive No diagnosis No diagnosis
# of cases 2 78 16 64 20 20
Action No biopsy  Biopsied Biopsied  No biopsy Biopsied Biopsied
Result Missed Necessary Unnecessary — Biopsies Necessary Unnecessary
malignancy  biopsies biopsies saved biopsies biopsies
No pruning
Malignant cases Benign cases Malignant cases Benign cases
100 100 0 0
Sensitivity = 0.98 Specificity = 0.45
2% 98% 55% 45%
False + ive True + ive False + ive True + ive
# of cases 2 98 55 45 0 0
Action No biopsy  Biopsied Biopsied  No biopsy
Result Missed Necessary Unnecessary — Biopsies
malignancy  biopsies biopsies saved

Although the invention is illustrated and described herein
with reference to specific embodiments, the invention is not
intended to be limited to the details shown. Rather, various
modifications may be made in the details within the scope
and range of equivalents of the claims and without departing
from the invention.

What is claimed:

1. A machine implemented method for ultrasound diag-
nosis, the steps comprising:

determining, by a computing device, a first risk of malig-

nancy based on data indicative of a human assessment
of a first set of features of one or more, ultrasound
images of a target;
determining, by the computing device, a second risk of
malignancy based on a second set of features of the one
or more ultrasound images, wherein the second set of
features are automatically determined by a computer-
implemented feature extraction process;
training, by the computing device and by utilizing a
training data set, a classifier, wherein the classifier is
selected to match characteristics of either one of or both
of the first set of features or the second set of features;

determining, by the computing device, at least one overall
risk value indicative of malignancy based on applying
an adaptive learning analysis and the trained classifier
to the first risk of malignancy and the second risk of
malignancy, wherein the adaptive learning analysis and
the trained classifier determine the overall risk value
based on combining the first risk of malignancy and the
second risk of malignancy and adjusting for a combi-
nation one or more weight values applied to the first set
of features and the second set of features;

characterizing, by the computing device, the at least one
overall risk value as one of a high confidence assess-
ment or a low confidence assessment.

2. The method of claim 1, further comprising if the overall
risk value is characterized as a low confidence assessment,
indicating a further evaluation of the target.

3. The method of claim 2, wherein the further evaluation
of the target includes one or more of a biopsy and additional
imaging.

4. The method of claim 1, wherein the characterizing step
includes comparing the at least one overall risk value to an
ambiguity threshold range, and
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wherein, if the at least one overall risk value falls within
the ambiguity threshold range, characterizing the at
least one overall risk value as a low confidence assess-
ment.

5. The method of claim 1, wherein the second set of
features includes at least one feature selected from the group
consisting of grayscale, shape, coarseness of a margin,
texture of a lesion, information based on Doppler effects,
and elastography.

6. The method of claim 1, wherein the second set of
features are analyzed by partitioning the target into sectors
and comparing the sectors of the target.

7. The method of claim 6, wherein segmentation of the
target is accomplished by automated, semi-automated, or
manual tracing of the target.

8. The method of claim 1, wherein the classifier is selected
from the group consisting of a logistic regression classifier,
Naive Bayes classifier, continuous, ordinal, nominal, spatial,
and frequency.

9. The method of claim 1, wherein applying the adaptive
learning process comprises employing adaptive boosting to
analyze either one of or both of the first set of features and
the second set of features.

10. The method of claim 1, wherein the overall risk value
is based on three or more sets of features of one or more
ultrasound images of the target.

11. An ultrasound diagnosis apparatus employing the
method of claim 1.

12. A system for diagnosing a tumor using an imaging
scan of a target comprising:

an imaging system configured to perform an imaging scan

of a target and to obtain imaging information regarding
the target; and

a processing system configured to:

receive data indicative of a human assessment of the
imaging information, wherein the human assessment
of the imaging information is based on a first set of
features of the imaging information;

determine a second set of features of the imaging
information, wherein the second set of features are
automatically determined by a computer-imple-
mented feature extraction process;

train, by utilizing a training data set, a classifier,
wherein the classifier is selected to match character-
istics of either one of or both of the first set of
features or the second set of features; and
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determine an overall risk value indicative of a risk of
malignancy based on applying an adaptive learning
analysis and the trained classifier to the human
assessment of the first set of features and an auto-
mated assessment of the second set of features,
wherein the adaptive learning analysis and the
trained classifier determine the overall risk value
based on combining the data indicative of the human
assessment and the automated assessment and
adjusting for a combination one or more weight
values applied to the first set of features and the
second set of features.

13. The method of claim 1, wherein the adaptive learning
process comprises:

determining a definitiveness of one or more of the first

risk of malignancy and the second risk of malignancy;
and

adjusting one or more of the weight values based on the

definitiveness.

14. The method of claim 1, wherein the adaptive learning
process determines a first classifier based on the first set of
features and a second classifier based on the second set of
features, and wherein combining the first risk of malignancy
and the second risk of malignancy comprises adjusting a
weighting of the first classifier separately from adjusting a
weighting of the second classifier.
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